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The Memory Reallocation Problem

• Input: a sequence of item inserts and deletes.

• Output: on each item update, arrange the items to occupy
non-overlapping regions of memory.

• Goal (intuitively) “minimize the total size of items moved”.
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The Memory Reallocation Problem

Definition

Memory: [0, 1].

Update: insert or delete.

Update cost =
total size of items moved to handle update

size of updated item
.

ε = 1− (sum of item sizes) = 1− (load factor).

Goal: Minimize update cost while handling load factor 1− ε.
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Background

Proposition (Folklore Algorithm)

There is an allocator with update cost O(ε−1).

Proof.

• Delete: do nothing.

• Suppose an item of size k must be inserted.

• By averaging, can show there is a length 2kε−1 interval with k
free space.

• Re-arrange this interval and place the inserted item in it.



Background

Proposition (Folklore Algorithm)

There is an allocator with update cost O(ε−1).

Proof.

• Delete: do nothing.

• Suppose an item of size k must be inserted.

• By averaging, can show there is a length 2kε−1 interval with k
free space.

• Re-arrange this interval and place the inserted item in it.



Background

Proposition (Folklore Algorithm)

There is an allocator with update cost O(ε−1).

Proof.

• Delete: do nothing.

• Suppose an item of size k must be inserted.

• By averaging, can show there is a length 2kε−1 interval with k
free space.

• Re-arrange this interval and place the inserted item in it.



Background

Proposition (Folklore Algorithm)

There is an allocator with update cost O(ε−1).

Proof.

• Delete: do nothing.

• Suppose an item of size k must be inserted.

• By averaging, can show there is a length 2kε−1 interval with k
free space.

• Re-arrange this interval and place the inserted item in it.



Background

Proposition (Folklore Algorithm)

There is an allocator with update cost O(ε−1).

Proof.

• Delete: do nothing.

• Suppose an item of size k must be inserted.

• By averaging, can show there is a length 2kε−1 interval with k
free space.

• Re-arrange this interval and place the inserted item in it.



Background

Proposition (Folklore Algorithm)

There is an allocator with update cost O(ε−1).

Theorem (Kuszmaul FOCS’23)

If all items have size at most O(ε4) then there is an allocator with
expected update cost O(log ε−1).

Conjecture (Kuszmaul FOCS’23)

Ω(ε−1) expected update cost is required for items of size Θ(ε).
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Main Result

Theorem

There is an allocator for arbitrary items with worst-case expected
update cost Õ(ε−1/2).

Up next:
Prove a simpler version of this theorem to illustrate some ideas.

Theorem

There is an allocator for items with sizes in [ε, 2ε] with average
update cost O(ε−2/3).
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Allocator Description

Partition [ε, 2ε) into ⌈ε−1/3⌉ size classes.
i-th size class:

[ε+ (i − 1)ε4/3, ε+ iε4/3).

size class 1 size class 2 size class 3



Allocator Description

Covering Set: Suffix of memory.

Every ⌊ε−1/3⌋ updates the allocator performs an expensive rebuild
operation where it rearranges all of memory to place the smallest
⌊ε−1/3⌋ items of size class i in the covering set (or all items of size
class i if there are fewer than ε−1/3 items of size class i).

Covering Set



Allocator Description

Item Deletes:
An item is deleted.



Allocator Description

Item Deletes:
Replace item with smaller item of same size class from the
covering set.



Allocator Description

Item Deletes:
Compact covering set.



Allocator Description

Item Deletes:
Logically inflate item size.

logically inflated size



Allocator Description

Item Inserts: Add inserted items to the covering set.
Place them after the final item in memory.
(Why is there room for this item?)



Allocator Analysis

Lemma

The allocator is well defined and produces a valid allocation.

Lemma

The allocator achieves amortized update cost O(ε−2/3).



Main Open Question

Question

Is there an allocator with expected update cost o(ε−1/2)?

Many cases where O(log ε−1) expected update cost is possible:

• Small items.

• Stochastic items.

• Items with sizes that are powers of two.

• Constant number of item sizes.
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Allocator Correctness

Lemma

The allocator is well defined and produces a valid allocation.

Proof.

Periodic rebuilds prevent gaps from building up too much: we
introduce up to ε4/3 gap per delete, and rebuild after ⌊ε−1/3⌋
updates.



Allocator Correctness

Lemma

The allocator is well defined and produces a valid allocation.

Proof.

Periodic rebuilds prevent gaps from building up too much: we
introduce up to ε4/3 gap per delete, and rebuild after ⌊ε−1/3⌋
updates.



Allocator Performance

Lemma

The allocator achieves amortized update cost O(ε−2/3).

Proof.

• The covering set consists of at most O(ε−2/3) items, and so has
total size at most O(ε1/3).

• Compacting the covering set on each delete thus costs O(ε1/3/ε).

• The periodic rebuilds cost O(ε−1) and happen every ⌊ε−1/3⌋
updates.



Extending to Our Full Allocator

Limitations of the simple allocator:

1. Simple allocator has average update cost O(ε−2/3); our full
allocator achieves worst-case expected update cost Õ(ε−1/2).

2. Simple allocator requires item sizes to be in [ε, 2ε].

Solution ideas:

• Use Kuszmaul’s Allocator to handle items with size < ε4.

• Main difficulty is extending simple allocator to handle sizes [ε4, 1].
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Extending to Our Full Allocator

Extending our simple allocator to handle sizes [ε4, 1]:

• Too broad a size range to use uniformly-sized size classes.

• Use geometric size classes [s, s · (1 + ε)].

• With geometric size classes, larger size classes waste more space
than smaller size classes.

• Further complication: rearranging items costs more when
performed on small item updates.

Solutions:

• Create nested covering sets.

• Number of items allowed in each size class is inversely
proportional to the item size.

• Randomized rebuilds.
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Can we Outperform Õ(ε−1/2)?

Seems challenging to extend current techniques.

However, we can improve substantially in interesting special cases.

Definition

Stochastic Items: Alternating inserts of items with random sizes
and deletes of random items.

Theorem

There is an allocator for stochastic items of sizes in [ε, 2ε) with
worst-case expected update cost O(log ε−1).
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Stochastic Items — Proof Ideas

• When an item is deleted, group it together with a set of
Θ(log ε−1) surrounding items, and call the size of this group y .

• A random set of Θ(log ε−1) items has good probability of having
a subset sum which is close to y .

• Replace the deleted item and its group with a subset of a block
near the end of memory.

• Compact the end of memory.


