A Nearly Quadratic Improvement for Memory Reallocation

Martin Farach-Colton ¹, William Kuszmaul², Nathan Sterling Sheffield³, Alek Westover³

NYU1, Harvard2, MIT3

SPAA 2024

memory:

- Input: a sequence of item inserts and deletes.
- **Output**: on each item update, arrange the items to occupy non-overlapping regions of memory.
- Goal (intuitively) "minimize the total size of items moved".

- Input: a sequence of item inserts and deletes.
- **Output**: on each item update, arrange the items to occupy non-overlapping regions of memory.
- Goal (intuitively) "minimize the total size of items moved".

- **Input**: a sequence of item inserts and deletes.
- Output: on each item update, arrange the items to occupy non-overlapping regions of memory.
- Goal (intuitively) "minimize the total size of items moved".

- Input: a sequence of item inserts and deletes.
- **Output**: on each item update, arrange the items to occupy non-overlapping regions of memory.
- Goal (intuitively) "minimize the total size of items moved".

- **Input**: a sequence of item inserts and deletes.
- Output: on each item update, arrange the items to occupy non-overlapping regions of memory.
- Goal (intuitively) "minimize the total size of items moved".

- **Input**: a sequence of item inserts and deletes.
- **Output**: on each item update, arrange the items to occupy non-overlapping regions of memory.
- Goal (intuitively) "minimize the total size of items moved".

- **Input**: a sequence of item inserts and deletes.
- Output: on each item update, arrange the items to occupy non-overlapping regions of memory.
- Goal (intuitively) "minimize the total size of items moved".

- **Input**: a sequence of item inserts and deletes.
- Output: on each item update, arrange the items to occupy non-overlapping regions of memory.
- Goal (intuitively) "minimize the total size of items moved".

delete.

- **Input**: a sequence of item inserts and deletes.
- Output: on each item update, arrange the items to occupy non-overlapping regions of memory.
- Goal (intuitively) "minimize the total size of items moved".

- Input: a sequence of item inserts and deletes.
- **Output**: on each item update, arrange the items to occupy non-overlapping regions of memory.
- Goal (intuitively) "minimize the total size of items moved".

- Input: a sequence of item inserts and deletes.
- **Output**: on each item update, arrange the items to occupy non-overlapping regions of memory.
- Goal (intuitively) "minimize the total size of items moved".

- **Input**: a sequence of item inserts and deletes.
- Output: on each item update, arrange the items to occupy non-overlapping regions of memory.
- Goal (intuitively) "minimize the total size of items moved".

Definition

Memory: [0,1].

Definition

Memory: [0,1].

Update: insert or delete.

Definition

Memory: [0,1].

Update: insert or delete.

 $\mbox{Update cost} = \frac{\mbox{total size of items moved to handle update}}{\mbox{size of updated item}}.$

Definition

Memory: [0,1].

Update: insert or delete.

$$\mbox{Update cost} = \frac{\mbox{total size of items moved to handle update}}{\mbox{size of updated item}}.$$

$$arepsilon=1-$$
 (sum of item sizes) $=1-$ (load factor).

Definition

Memory: [0, 1].

Update: insert or delete.

$$\mbox{Update cost} = \frac{\mbox{total size of items moved to handle update}}{\mbox{size of updated item}}.$$

$$\varepsilon = 1 - (\text{sum of item sizes}) = 1 - (\text{load factor}).$$

Goal: Minimize update cost while handling load factor $1 - \varepsilon$.

Proposition (Folklore Algorithm)

There is an allocator with update cost $O(\varepsilon^{-1})$.

Proof.

П

Proposition (Folklore Algorithm)

There is an allocator with update cost $O(\varepsilon^{-1})$.

Proof.

• Suppose an item of size k must be inserted.

Proposition (Folklore Algorithm)

There is an allocator with update cost $O(\varepsilon^{-1})$.

Proof.

- Suppose an item of size *k* must be inserted.
- By averaging, there is a length $k\varepsilon^{-1}$ interval with k free space.

Proposition (Folklore Algorithm)

There is an allocator with update cost $O(\varepsilon^{-1})$.

Proof.

- Suppose an item of size *k* must be inserted.
- By averaging, there is a length $k\varepsilon^{-1}$ interval with k free space.
- Re-arrange this interval and place the inserted item in it.

Proposition (Folklore Algorithm)

There is an allocator with update cost $O(\varepsilon^{-1})$.

Theorem (Kuszmaul FOCS'23)

If all items have size at most $O(\varepsilon^4)$ then there is an allocator with expected update cost $O(\log \varepsilon^{-1})$.

Proposition (Folklore Algorithm)

There is an allocator with update cost $O(\varepsilon^{-1})$.

Theorem (Kuszmaul FOCS'23)

If all items have size at most $O(\varepsilon^4)$ then there is an allocator with expected update cost $O(\log \varepsilon^{-1})$.

Conjecture (Kuszmaul FOCS'23)

 $\Omega(\varepsilon^{-1})$ expected update cost is required for items of size $\Theta(\varepsilon)$.

Proposition (Folklore Algorithm)

There is an allocator with update cost $O(\varepsilon^{-1})$.

Theorem (Kuszmaul FOCS'23)

If all items have size at most $O(\varepsilon^4)$ then there is an allocator with expected update cost $O(\log \varepsilon^{-1})$.

Conjecture (Kuszmaul FOCS'23)

 $\Omega(\varepsilon^{-1})$ expected update cost is required for items of size $\Theta(\varepsilon)$.

Main Result

Theorem

There is an allocator for arbitrary items with worst-case expected update cost $\widetilde{O}(\varepsilon^{-1/2})$.

Main Result

Theorem

There is an allocator for arbitrary items with worst-case expected update cost $\widetilde{O}(\varepsilon^{-1/2})$.

Up next:

Prove a simpler version of this theorem to illustrate some ideas.

Theorem

There is an allocator for items with sizes in $[\varepsilon, 2\varepsilon]$ with average update cost $\widetilde{O}(\varepsilon^{-2/3})$.

Partition $[\varepsilon, 2\varepsilon)$ into $[\varepsilon^{-1/3}]$ size classes.

i-th size class:

$$[\varepsilon + (i-1)\varepsilon^{4/3}, \varepsilon + i\varepsilon^{4/3}).$$

Covering Set: Suffix of memory.

Let x_i = number of items of size class i.

Every $\lfloor \varepsilon^{-1/3} \rfloor$ updates the allocator performs an expensive **rebuild operation** where it rearranges all of memory to place the smallest $\min(x_i, \lfloor \varepsilon^{-1/3} \rfloor)$ items of size class i in the covering set.

Item Inserts: Add inserted items to the covering set.

Place them after the final item in memory.

Item Deletes:

Item Deletes:

(b) SIMPLE replaces the deleted item with a smaller item of the same size class from the covering set

Item Deletes:

(c) SIMPLE compacts the covering set

Item Deletes:

(d) The moved item is logically treated as being the size of the one it replaced until SIMPLE performs a full rebuild

Logically inflated size

Allocator Correctness

Lemma

The allocator is well defined and produces a valid allocation.

Allocator Correctness

Lemma

The allocator is well defined and produces a valid allocation.

Proof.

Periodic rebuilds prevent gaps from building up too much: we introduce up to $\varepsilon^{4/3}$ gap per delete, and rebuild after $\lfloor \varepsilon^{-1/3} \rfloor$ updates.

Allocator Performance

Lemma

The allocator achieves amortized update cost $O(\varepsilon^{-2/3})$.

Proof.

- The covering set consists of at most $O(\varepsilon^{-2/3})$ items, and so has total size at most $O(\varepsilon^{1/3})$.
- Compacting the covering set on each delete thus costs $O(\varepsilon^{1/3}/\varepsilon)$.
- The periodic rebuilds cost $O(\varepsilon^{-1})$ and happen every $\lfloor \varepsilon^{-1/3} \rfloor$ updates.

Limitations of the simple allocator:

Limitations of the simple allocator:

1. Simple allocator has average update cost $O(\varepsilon^{-2/3})$; our full allocator achieves worst-case expected update cost $\widetilde{O}(\varepsilon^{-1/2})$.

Limitations of the simple allocator:

- 1. Simple allocator has average update cost $O(\varepsilon^{-2/3})$; our full allocator achieves worst-case expected update cost $\widetilde{O}(\varepsilon^{-1/2})$.
- 2. Simple allocator requires item sizes to be in $[\varepsilon, 2\varepsilon]$.

Limitations of the simple allocator:

- 1. Simple allocator has average update cost $O(\varepsilon^{-2/3})$; our full allocator achieves worst-case expected update cost $\widetilde{O}(\varepsilon^{-1/2})$.
- 2. Simple allocator requires item sizes to be in $[\varepsilon, 2\varepsilon]$.

Solution ideas:

Limitations of the simple allocator:

- 1. Simple allocator has average update cost $O(\varepsilon^{-2/3})$; our full allocator achieves worst-case expected update cost $\widetilde{O}(\varepsilon^{-1/2})$.
- 2. Simple allocator requires item sizes to be in $[\varepsilon, 2\varepsilon]$.

Solution ideas:

• Use Kuszmaul's Allocator to handle items with size $< \varepsilon^4$.

Limitations of the simple allocator:

- 1. Simple allocator has average update cost $O(\varepsilon^{-2/3})$; our full allocator achieves worst-case expected update cost $\widetilde{O}(\varepsilon^{-1/2})$.
- 2. Simple allocator requires item sizes to be in $[\varepsilon, 2\varepsilon]$.

Solution ideas:

- Use Kuszmaul's Allocator to handle items with size $< \varepsilon^4$.
- Main difficulty is extending simple allocator to handle sizes $[\varepsilon^4, 1]$.

Extending our simple allocator to handle sizes $[\varepsilon^4, 1]$:

• Too broad a size range to use uniformly-sized size classes.

Extending our simple allocator to handle sizes $[\varepsilon^4, 1]$:

- Too broad a size range to use uniformly-sized size classes.
- Use *geometric* size classes $[s, s \cdot (1 + \varepsilon)]$.

Extending our simple allocator to handle sizes $[\varepsilon^4, 1]$:

- Too broad a size range to use uniformly-sized size classes.
- Use *geometric* size classes $[s, s \cdot (1 + \varepsilon)]$.
- With geometric size classes, larger size classes waste more space than smaller size classes.

Extending our simple allocator to handle sizes $[\varepsilon^4, 1]$:

- Too broad a size range to use uniformly-sized size classes.
- Use *geometric* size classes $[s, s \cdot (1 + \varepsilon)]$.
- With geometric size classes, larger size classes waste more space than smaller size classes.
- Further complication: rearranging items costs more when performed on small item updates.

Extending our simple allocator to handle sizes $[\varepsilon^4, 1]$:

- Too broad a size range to use uniformly-sized size classes.
- Use *geometric* size classes $[s, s \cdot (1 + \varepsilon)]$.
- With geometric size classes, larger size classes waste more space than smaller size classes.
- Further complication: rearranging items costs more when performed on small item updates.

Solutions:

Extending our simple allocator to handle sizes $[\varepsilon^4, 1]$:

- Too broad a size range to use uniformly-sized size classes.
- Use *geometric* size classes $[s, s \cdot (1 + \varepsilon)]$.
- With geometric size classes, larger size classes waste more space than smaller size classes.
- Further complication: rearranging items costs more when performed on small item updates.

Solutions:

Create nested covering sets.

Extending our simple allocator to handle sizes $[\varepsilon^4, 1]$:

- Too broad a size range to use uniformly-sized size classes.
- Use *geometric* size classes $[s, s \cdot (1 + \varepsilon)]$.
- With geometric size classes, larger size classes waste more space than smaller size classes.
- Further complication: rearranging items costs more when performed on small item updates.

Solutions:

- Create nested covering sets.
- Number of items allowed in each size class is inversely proportional to the item size.

Extending our simple allocator to handle sizes $[\varepsilon^4, 1]$:

- Too broad a size range to use uniformly-sized size classes.
- Use *geometric* size classes $[s, s \cdot (1 + \varepsilon)]$.
- With geometric size classes, larger size classes waste more space than smaller size classes.
- Further complication: rearranging items costs more when performed on small item updates.

Solutions:

- Create nested covering sets.
- Number of items allowed in each size class is inversely proportional to the item size.
- Randomized rebuilds.

Seems challenging to extend current techniques.

Seems challenging to extend current techniques.

However, we can improve substantially in interesting special cases.

Seems challenging to extend current techniques.

However, we can improve substantially in interesting special cases.

Definition

Stochastic Items: Alternating inserts of items with random sizes and deletes of random items.

Seems challenging to extend current techniques.

However, we can improve substantially in interesting special cases.

Definition

Stochastic Items: Alternating inserts of items with random sizes and deletes of random items.

Theorem

There is an allocator for stochastic items of sizes in $[\varepsilon, 2\varepsilon)$ with worst-case expected update cost $O(\log \varepsilon^{-1})$.

Stochastic Items — Proof Ideas

- When an item is deleted, group it together with a set of $\Theta(\log \varepsilon^{-1})$ surrounding items, and call the size of this group y.
- A random set of $\Theta(\log \varepsilon^{-1})$ items has good probability of having a subset sum which is close to y.
- Replace the deleted item and its group with a subset of a block near the end of memory.
- Compact the end of memory.

Many cases where $O(\log \varepsilon^{-1})$ expected update cost is possible:

Many cases where $O(\log \varepsilon^{-1})$ expected update cost is possible:

• Small items

Many cases where $O(\log \varepsilon^{-1})$ expected update cost is possible:

- Small items
- Stochastic items

Many cases where $O(\log \varepsilon^{-1})$ expected update cost is possible:

- Small items
- Stochastic items
- Few distinct types of items

Many cases where $O(\log \varepsilon^{-1})$ expected update cost is possible:

- Small items
- Stochastic items
- Few distinct types of items

Lower Bounds?

Theorem

There is no "resizable" allocator with expected update cost $o(\log \varepsilon^{-1})$.

Many cases where $O(\log \varepsilon^{-1})$ expected update cost is possible:

- Small items
- Stochastic items
- Few distinct types of items

Question

Is there an allocator with expected update cost $o(\varepsilon^{-1/2})$?