A Nearly Quadratic Improvement for Memory Reallocation

Martin Farach-Colton ${ }^{1}$, William Kuszmaul ${ }^{2}$, Nathan Sterling Sheffield ${ }^{3}$, Alek Westover ${ }^{3}$

NYU^{1}, Harvard $^{2}, \mathrm{MIT}^{3}$

SPAA 2024

The Memory Reallocation Problem

- Input: a sequence of item inserts and deletes.
- Output: on each item update, arrange the items to occupy non-overlapping regions of memory.
- Goal (intuitively) "minimize the total size of items moved".

```
memory:
```


The Memory Reallocation Problem

- Input: a sequence of item inserts and deletes.
- Output: on each item update, arrange the items to occupy non-overlapping regions of memory.
- Goal (intuitively) "minimize the total size of items moved".
insert:

The Memory Reallocation Problem

- Input: a sequence of item inserts and deletes.
- Output: on each item update, arrange the items to occupy non-overlapping regions of memory.
- Goal (intuitively) "minimize the total size of items moved".

The Memory Reallocation Problem

- Input: a sequence of item inserts and deletes.
- Output: on each item update, arrange the items to occupy non-overlapping regions of memory.
- Goal (intuitively) "minimize the total size of items moved".
insert:

The Memory Reallocation Problem

- Input: a sequence of item inserts and deletes.
- Output: on each item update, arrange the items to occupy non-overlapping regions of memory.
- Goal (intuitively) "minimize the total size of items moved".

The Memory Reallocation Problem

- Input: a sequence of item inserts and deletes.
- Output: on each item update, arrange the items to occupy non-overlapping regions of memory.
- Goal (intuitively) "minimize the total size of items moved".

```
insert:
```


The Memory Reallocation Problem

- Input: a sequence of item inserts and deletes.
- Output: on each item update, arrange the items to occupy non-overlapping regions of memory.
- Goal (intuitively) "minimize the total size of items moved".

The Memory Reallocation Problem

- Input: a sequence of item inserts and deletes.
- Output: on each item update, arrange the items to occupy non-overlapping regions of memory.
- Goal (intuitively) "minimize the total size of items moved".
delete:

The Memory Reallocation Problem

- Input: a sequence of item inserts and deletes.
- Output: on each item update, arrange the items to occupy non-overlapping regions of memory.
- Goal (intuitively) "minimize the total size of items moved".

The Memory Reallocation Problem

- Input: a sequence of item inserts and deletes.
- Output: on each item update, arrange the items to occupy non-overlapping regions of memory.
- Goal (intuitively) "minimize the total size of items moved".

```
insert:
```


The Memory Reallocation Problem

- Input: a sequence of item inserts and deletes.
- Output: on each item update, arrange the items to occupy non-overlapping regions of memory.
- Goal (intuitively) "minimize the total size of items moved".

```
insert:
```


The Memory Reallocation Problem

- Input: a sequence of item inserts and deletes.
- Output: on each item update, arrange the items to occupy non-overlapping regions of memory.
- Goal (intuitively) "minimize the total size of items moved".

The Memory Reallocation Problem

Definition
Memory: $[0,1]$.

The Memory Reallocation Problem

Definition
Memory: $[0,1]$.
Update: insert or delete.

The Memory Reallocation Problem

Definition
Memory: $[0,1]$.
Update: insert or delete.

$$
\text { Update cost }=\frac{\text { total size of items moved to handle update }}{\text { size of updated item }} .
$$

The Memory Reallocation Problem

Definition
Memory: $[0,1]$.
Update: insert or delete.

$$
\text { Update cost }=\frac{\text { total size of items moved to handle update }}{\text { size of updated item }} .
$$

$$
\varepsilon=1-(\text { sum of item sizes })=1-(\text { load factor }) .
$$

The Memory Reallocation Problem

Definition
Memory: [0, 1].
Update: insert or delete.

$$
\text { Update cost }=\frac{\text { total size of items moved to handle update }}{\text { size of updated item }}
$$

$$
\varepsilon=1-(\text { sum of item sizes })=1-(\text { load factor }) .
$$

Goal: Minimize update cost while handling load factor $1-\varepsilon$.

Background

Proposition (Folklore Algorithm)
There is an allocator with update cost $O\left(\varepsilon^{-1}\right)$.
Proof.

Background

Proposition (Folklore Algorithm)
There is an allocator with update cost $O\left(\varepsilon^{-1}\right)$.
Proof.

- Suppose an item of size k must be inserted.

Background

Proposition (Folklore Algorithm)
There is an allocator with update cost $O\left(\varepsilon^{-1}\right)$.

Proof.

- Suppose an item of size k must be inserted.
- By averaging, there is a length $k \varepsilon^{-1}$ interval with k free space.

Background

Proposition (Folklore Algorithm)
There is an allocator with update cost $O\left(\varepsilon^{-1}\right)$.

Proof.

- Suppose an item of size k must be inserted.
- By averaging, there is a length $k \varepsilon^{-1}$ interval with k free space.
- Re-arrange this interval and place the inserted item in it.

Background

Proposition (Folklore Algorithm)
There is an allocator with update cost $O\left(\varepsilon^{-1}\right)$.
Theorem (Kuszmaul FOCS'23)
If all items have size at most $O\left(\varepsilon^{4}\right)$ then there is an allocator with expected update cost $O\left(\log \varepsilon^{-1}\right)$.

Background

Proposition (Folklore Algorithm)
There is an allocator with update cost $O\left(\varepsilon^{-1}\right)$.
Theorem (Kuszmaul FOCS'23)
If all items have size at most $O\left(\varepsilon^{4}\right)$ then there is an allocator with expected update cost $O\left(\log \varepsilon^{-1}\right)$.

Conjecture (Kuszmaul FOCS'23)
$\Omega\left(\varepsilon^{-1}\right)$ expected update cost is required for items of size $\Theta(\varepsilon)$.

Background

Proposition (Folklore Algorithm)
There is an allocator with update cost $O\left(\varepsilon^{-1}\right)$.
Theorem (Kuszmaul FOCS'23)
If all items have size at most $O\left(\varepsilon^{4}\right)$ then there is an allocator with expected update cost $O\left(\log \varepsilon^{-1}\right)$.

Conjecture (KuszmaulFOCS'23)
$\Omega\left(\varepsilon^{-1}\right)$ expected updatecost is required for items of size $\Theta(\varepsilon)$.

Main Result

Theorem
There is an allocator for arbitrary items with worst-case expected update cost $\widetilde{O}\left(\varepsilon^{-1 / 2}\right)$.

Main Result

Theorem
There is an allocator for arbitrary items with worst-case expected update cost $\widetilde{O}\left(\varepsilon^{-1 / 2}\right)$.

Up next:

Prove a simpler version of this theorem to illustrate some ideas.
Theorem
There is an allocator for items with sizes in $[\varepsilon, 2 \varepsilon]$ with average update cost $\widetilde{O}\left(\varepsilon^{-2 / 3}\right)$.

Allocator Description

Partition $[\varepsilon, 2 \varepsilon)$ into $\left\lceil\varepsilon^{-1 / 3}\right\rceil$ size classes.
i-th size class:

$$
\left[\varepsilon+(i-1) \varepsilon^{4 / 3}, \varepsilon+i \varepsilon^{4 / 3}\right)
$$

Allocator Description

Covering Set: Suffix of memory.
Let $x_{i}=$ number of items of size class i.
Every $\left\lfloor\varepsilon^{-1 / 3}\right\rfloor$ updates the allocator performs an expensive rebuild operation where it rearranges all of memory to place the smallest $\min \left(x_{i},\left\lfloor\varepsilon^{-1 / 3}\right\rfloor\right)$ items of size class i in the covering set.

Allocator Description

Item Inserts: Add inserted items to the covering set.
Place them after the final item in memory.

Allocator Description

Item Deletes:

Covering set
(a) An item is deleted from memory

Allocator Description

Item Deletes:

(b) SIMPLE replaces the deleted item with a smaller item of the same size class from the covering set

Allocator Description

Item Deletes:

(c) SIMPLE compacts the covering set

Allocator Description

Item Deletes:

(d) The moved item is logically treated as being the size of the one it replaced until SIMPLE performs a full rebuild

Logically inflated size

Allocator Correctness

Lemma

The allocator is well defined and produces a valid allocation.

Allocator Correctness

Lemma
The allocator is well defined and produces a valid allocation.
Proof.
Periodic rebuilds prevent gaps from building up too much: we introduce up to $\varepsilon^{4 / 3}$ gap per delete, and rebuild after $\left\lfloor\varepsilon^{-1 / 3}\right\rfloor$ updates.

Allocator Performance

Lemma
The allocator achieves amortized update cost $O\left(\varepsilon^{-2 / 3}\right)$.

Proof.

- The covering set consists of at most $O\left(\varepsilon^{-2 / 3}\right)$ items, and so has total size at most $O\left(\varepsilon^{1 / 3}\right)$.
- Compacting the covering set on each delete thus costs $O\left(\varepsilon^{1 / 3} / \varepsilon\right)$.
- The periodic rebuilds cost $O\left(\varepsilon^{-1}\right)$ and happen every $\left\lfloor\varepsilon^{-1 / 3}\right\rfloor$ updates.

Extending to Our Full Allocator

Limitations of the simple allocator:

Extending to Our Full Allocator

Limitations of the simple allocator:

1. Simple allocator has average update cost $O\left(\varepsilon^{-2 / 3}\right)$; our full allocator achieves worst-case expected update cost $\widetilde{O}\left(\varepsilon^{-1 / 2}\right)$.

Extending to Our Full Allocator

Limitations of the simple allocator:

1. Simple allocator has average update cost $O\left(\varepsilon^{-2 / 3}\right)$; our full allocator achieves worst-case expected update cost $\widetilde{O}\left(\varepsilon^{-1 / 2}\right)$.
2. Simple allocator requires item sizes to be in $[\varepsilon, 2 \varepsilon]$.

Extending to Our Full Allocator

Limitations of the simple allocator:

1. Simple allocator has average update cost $O\left(\varepsilon^{-2 / 3}\right)$; our full allocator achieves worst-case expected update cost $\widetilde{O}\left(\varepsilon^{-1 / 2}\right)$.
2. Simple allocator requires item sizes to be in $[\varepsilon, 2 \varepsilon]$.

Solution ideas:

Extending to Our Full Allocator

Limitations of the simple allocator:

1. Simple allocator has average update cost $O\left(\varepsilon^{-2 / 3}\right)$; our full allocator achieves worst-case expected update cost $\widetilde{O}\left(\varepsilon^{-1 / 2}\right)$.
2. Simple allocator requires item sizes to be in $[\varepsilon, 2 \varepsilon]$.

Solution ideas:

- Use Kuszmaul's Allocator to handle items with size $<\varepsilon^{4}$.

Extending to Our Full Allocator

Limitations of the simple allocator:

1. Simple allocator has average update cost $O\left(\varepsilon^{-2 / 3}\right)$; our full allocator achieves worst-case expected update cost $\widetilde{O}\left(\varepsilon^{-1 / 2}\right)$.
2. Simple allocator requires item sizes to be in $[\varepsilon, 2 \varepsilon]$.

Solution ideas:

- Use Kuszmaul's Allocator to handle items with size $<\varepsilon^{4}$.
- Main difficulty is extending simple allocator to handle sizes $\left[\varepsilon^{4}, 1\right]$.

Extending to Our Full Allocator

Extending our simple allocator to handle sizes $\left[\varepsilon^{4}, 1\right]$:

- Too broad a size range to use uniformly-sized size classes.

Extending to Our Full Allocator

Extending our simple allocator to handle sizes $\left[\varepsilon^{4}, 1\right]$:

- Too broad a size range to use uniformly-sized size classes.
- Use geometric size classes $[s, s \cdot(1+\varepsilon)]$.

Extending to Our Full Allocator

Extending our simple allocator to handle sizes $\left[\varepsilon^{4}, 1\right]$:

- Too broad a size range to use uniformly-sized size classes.
- Use geometric size classes $[s, s \cdot(1+\varepsilon)]$.
- With geometric size classes, larger size classes waste more space than smaller size classes.

Extending to Our Full Allocator

Extending our simple allocator to handle sizes $\left[\varepsilon^{4}, 1\right]$:

- Too broad a size range to use uniformly-sized size classes.
- Use geometric size classes $[s, s \cdot(1+\varepsilon)]$.
- With geometric size classes, larger size classes waste more space than smaller size classes.
- Further complication: rearranging items costs more when performed on small item updates.

Extending to Our Full Allocator

Extending our simple allocator to handle sizes $\left[\varepsilon^{4}, 1\right]$:

- Too broad a size range to use uniformly-sized size classes.
- Use geometric size classes $[s, s \cdot(1+\varepsilon)]$.
- With geometric size classes, larger size classes waste more space than smaller size classes.
- Further complication: rearranging items costs more when performed on small item updates.

Solutions:

Extending to Our Full Allocator

Extending our simple allocator to handle sizes $\left[\varepsilon^{4}, 1\right]$:

- Too broad a size range to use uniformly-sized size classes.
- Use geometric size classes $[s, s \cdot(1+\varepsilon)]$.
- With geometric size classes, larger size classes waste more space than smaller size classes.
- Further complication: rearranging items costs more when performed on small item updates.

Solutions:

- Create nested covering sets.

Extending to Our Full Allocator

Extending our simple allocator to handle sizes $\left[\varepsilon^{4}, 1\right]$:

- Too broad a size range to use uniformly-sized size classes.
- Use geometric size classes $[s, s \cdot(1+\varepsilon)]$.
- With geometric size classes, larger size classes waste more space than smaller size classes.
- Further complication: rearranging items costs more when performed on small item updates.

Solutions:

- Create nested covering sets.
- Number of items allowed in each size class is inversely proportional to the item size.

Extending to Our Full Allocator

Extending our simple allocator to handle sizes $\left[\varepsilon^{4}, 1\right]$:

- Too broad a size range to use uniformly-sized size classes.
- Use geometric size classes $[s, s \cdot(1+\varepsilon)]$.
- With geometric size classes, larger size classes waste more space than smaller size classes.
- Further complication: rearranging items costs more when performed on small item updates.

Solutions:

- Create nested covering sets.
- Number of items allowed in each size class is inversely proportional to the item size.
- Randomized rebuilds.

Can we Outperform $\widetilde{O}\left(\varepsilon^{-1 / 2}\right)$?

Seems challenging to extend current techniques.

Can we Outperform $\widetilde{O}\left(\varepsilon^{-1 / 2}\right)$?

Seems challenging to extend current techniques. However, we can improve substantially in interesting special cases.

Can we Outperform $\widetilde{O}\left(\varepsilon^{-1 / 2}\right)$?

Seems challenging to extend current techniques.
However, we can improve substantially in interesting special cases.
Definition
Stochastic Items: Alternating inserts of items with random sizes and deletes of random items.

Can we Outperform $\widetilde{O}\left(\varepsilon^{-1 / 2}\right)$?

Seems challenging to extend current techniques.

However, we can improve substantially in interesting special cases.
Definition
Stochastic Items: Alternating inserts of items with random sizes and deletes of random items.

Theorem
There is an allocator for stochastic items of sizes in $[\varepsilon, 2 \varepsilon)$ with worst-case expected update $\operatorname{cost} O\left(\log \varepsilon^{-1}\right)$.

Stochastic Items — Proof Ideas

- When an item is deleted, group it together with a set of $\Theta\left(\log \varepsilon^{-1}\right)$ surrounding items, and call the size of this group y.
- A random set of $\Theta\left(\log \varepsilon^{-1}\right)$ items has good probability of having a subset sum which is close to y.
- Replace the deleted item and its group with a subset of a block near the end of memory.
- Compact the end of memory.

Main Open Question

Many cases where $O\left(\log \varepsilon^{-1}\right)$ expected update cost is possible:

Main Open Question

Many cases where $O\left(\log \varepsilon^{-1}\right)$ expected update cost is possible:

- Small items

Main Open Question

Many cases where $O\left(\log \varepsilon^{-1}\right)$ expected update cost is possible:

- Small items
- Stochastic items

Main Open Question

Many cases where $O\left(\log \varepsilon^{-1}\right)$ expected update cost is possible:

- Small items
- Stochastic items
- Few distinct types of items

Main Open Question

Many cases where $O\left(\log \varepsilon^{-1}\right)$ expected update cost is possible:

- Small items
- Stochastic items
- Few distinct types of items

Lower Bounds?
Theorem
There is no "resizable" allocator with expected update cost $o\left(\log \varepsilon^{-1}\right)$.

Main Open Question

Many cases where $O\left(\log \varepsilon^{-1}\right)$ expected update cost is possible:

- Small items
- Stochastic items
- Few distinct types of items

Question
Is there an allocator with expected update cost $o\left(\varepsilon^{-1 / 2}\right)$?

