
A Nearly Quadratic Improvement
for Memory Reallocation

Martin Farach-Colton 1, William Kuszmaul2,
Nathan Sterling Sheffield3, Alek Westover3

NYU1, Harvard2, MIT3

SPAA 2024



The Memory Reallocation Problem

• Input: a sequence of item inserts and deletes.

• Output: on each item update, arrange the items to occupy
non-overlapping regions of memory.

• Goal (intuitively) “minimize the total size of items moved”.

memory:



The Memory Reallocation Problem

• Input: a sequence of item inserts and deletes.

• Output: on each item update, arrange the items to occupy
non-overlapping regions of memory.

• Goal (intuitively) “minimize the total size of items moved”.

insert:



The Memory Reallocation Problem

• Input: a sequence of item inserts and deletes.

• Output: on each item update, arrange the items to occupy
non-overlapping regions of memory.

• Goal (intuitively) “minimize the total size of items moved”.



The Memory Reallocation Problem

• Input: a sequence of item inserts and deletes.

• Output: on each item update, arrange the items to occupy
non-overlapping regions of memory.

• Goal (intuitively) “minimize the total size of items moved”.

insert:



The Memory Reallocation Problem

• Input: a sequence of item inserts and deletes.

• Output: on each item update, arrange the items to occupy
non-overlapping regions of memory.

• Goal (intuitively) “minimize the total size of items moved”.



The Memory Reallocation Problem

• Input: a sequence of item inserts and deletes.

• Output: on each item update, arrange the items to occupy
non-overlapping regions of memory.

• Goal (intuitively) “minimize the total size of items moved”.

insert:



The Memory Reallocation Problem

• Input: a sequence of item inserts and deletes.

• Output: on each item update, arrange the items to occupy
non-overlapping regions of memory.

• Goal (intuitively) “minimize the total size of items moved”.



The Memory Reallocation Problem

• Input: a sequence of item inserts and deletes.

• Output: on each item update, arrange the items to occupy
non-overlapping regions of memory.

• Goal (intuitively) “minimize the total size of items moved”.

delete :



The Memory Reallocation Problem

• Input: a sequence of item inserts and deletes.

• Output: on each item update, arrange the items to occupy
non-overlapping regions of memory.

• Goal (intuitively) “minimize the total size of items moved”.



The Memory Reallocation Problem

• Input: a sequence of item inserts and deletes.

• Output: on each item update, arrange the items to occupy
non-overlapping regions of memory.

• Goal (intuitively) “minimize the total size of items moved”.

insert :



The Memory Reallocation Problem

• Input: a sequence of item inserts and deletes.

• Output: on each item update, arrange the items to occupy
non-overlapping regions of memory.

• Goal (intuitively) “minimize the total size of items moved”.

insert:

move item



The Memory Reallocation Problem

• Input: a sequence of item inserts and deletes.

• Output: on each item update, arrange the items to occupy
non-overlapping regions of memory.

• Goal (intuitively) “minimize the total size of items moved”.



The Memory Reallocation Problem

Definition

Memory: [0, 1].

Update: insert or delete.

Update cost =
total size of items moved to handle update

size of updated item
.

ε = 1− (sum of item sizes) = 1− (load factor).

Goal: Minimize update cost while handling load factor 1− ε.



The Memory Reallocation Problem

Definition

Memory: [0, 1].
Update: insert or delete.

Update cost =
total size of items moved to handle update

size of updated item
.

ε = 1− (sum of item sizes) = 1− (load factor).

Goal: Minimize update cost while handling load factor 1− ε.



The Memory Reallocation Problem

Definition

Memory: [0, 1].
Update: insert or delete.

Update cost =
total size of items moved to handle update

size of updated item
.

ε = 1− (sum of item sizes) = 1− (load factor).

Goal: Minimize update cost while handling load factor 1− ε.



The Memory Reallocation Problem

Definition

Memory: [0, 1].
Update: insert or delete.

Update cost =
total size of items moved to handle update

size of updated item
.

ε = 1− (sum of item sizes) = 1− (load factor).

Goal: Minimize update cost while handling load factor 1− ε.



The Memory Reallocation Problem

Definition

Memory: [0, 1].
Update: insert or delete.

Update cost =
total size of items moved to handle update

size of updated item
.

ε = 1− (sum of item sizes) = 1− (load factor).

Goal: Minimize update cost while handling load factor 1− ε.



Background

Proposition (Folklore Algorithm)

There is an allocator with update cost O(ε−1).

Proof.

• Suppose an item of size k must be inserted.

• By averaging, there is a length kε−1 interval with k free space.

• Re-arrange this interval and place the inserted item in it.



Background

Proposition (Folklore Algorithm)

There is an allocator with update cost O(ε−1).

Proof.

• Suppose an item of size k must be inserted.

• By averaging, there is a length kε−1 interval with k free space.

• Re-arrange this interval and place the inserted item in it.



Background

Proposition (Folklore Algorithm)

There is an allocator with update cost O(ε−1).

Proof.

• Suppose an item of size k must be inserted.

• By averaging, there is a length kε−1 interval with k free space.

• Re-arrange this interval and place the inserted item in it.



Background

Proposition (Folklore Algorithm)

There is an allocator with update cost O(ε−1).

Proof.

• Suppose an item of size k must be inserted.

• By averaging, there is a length kε−1 interval with k free space.

• Re-arrange this interval and place the inserted item in it.



Background

Proposition (Folklore Algorithm)

There is an allocator with update cost O(ε−1).

Theorem (Kuszmaul FOCS’23)

If all items have size at most O(ε4) then there is an allocator with
expected update cost O(log ε−1).

Conjecture (Kuszmaul FOCS’23)

Ω(ε−1) expected update cost is required for items of size Θ(ε).



Background

Proposition (Folklore Algorithm)

There is an allocator with update cost O(ε−1).

Theorem (Kuszmaul FOCS’23)

If all items have size at most O(ε4) then there is an allocator with
expected update cost O(log ε−1).

Conjecture (Kuszmaul FOCS’23)

Ω(ε−1) expected update cost is required for items of size Θ(ε).



Background

Proposition (Folklore Algorithm)

There is an allocator with update cost O(ε−1).

Theorem (Kuszmaul FOCS’23)

If all items have size at most O(ε4) then there is an allocator with
expected update cost O(log ε−1).

Conjecture (Kuszmaul FOCS’23)

Ω(ε−1) expected update cost is required for items of size Θ(ε).



Main Result

Theorem

There is an allocator for arbitrary items with worst-case expected
update cost Õ(ε−1/2).

Up next:
Prove a simpler version of this theorem to illustrate some ideas.

Theorem

There is an allocator for items with sizes in [ε, 2ε] with average
update cost Õ(ε−2/3).



Main Result

Theorem

There is an allocator for arbitrary items with worst-case expected
update cost Õ(ε−1/2).

Up next:
Prove a simpler version of this theorem to illustrate some ideas.

Theorem

There is an allocator for items with sizes in [ε, 2ε] with average
update cost Õ(ε−2/3).



Allocator Description

Partition [ε, 2ε) into ⌈ε−1/3⌉ size classes.
i-th size class:

[ε+ (i − 1)ε4/3, ε+ iε4/3).



Allocator Description

Covering Set: Suffix of memory.
Let xi = number of items of size class i .

Every ⌊ε−1/3⌋ updates the allocator performs an expensive rebuild
operation where it rearranges all of memory to place the smallest
min(xi , ⌊ε−1/3⌋) items of size class i in the covering set.



Allocator Description

Item Inserts: Add inserted items to the covering set.
Place them after the final item in memory.



Allocator Description

Item Deletes:



Allocator Description

Item Deletes:



Allocator Description

Item Deletes:



Allocator Description

Item Deletes:



Allocator Correctness

Lemma

The allocator is well defined and produces a valid allocation.

Proof.

Periodic rebuilds prevent gaps from building up too much: we
introduce up to ε4/3 gap per delete, and rebuild after ⌊ε−1/3⌋
updates.



Allocator Correctness

Lemma

The allocator is well defined and produces a valid allocation.

Proof.

Periodic rebuilds prevent gaps from building up too much: we
introduce up to ε4/3 gap per delete, and rebuild after ⌊ε−1/3⌋
updates.



Allocator Performance

Lemma

The allocator achieves amortized update cost O(ε−2/3).

Proof.

• The covering set consists of at most O(ε−2/3) items, and so has
total size at most O(ε1/3).

• Compacting the covering set on each delete thus costs O(ε1/3/ε).

• The periodic rebuilds cost O(ε−1) and happen every ⌊ε−1/3⌋
updates.



Extending to Our Full Allocator

Limitations of the simple allocator:

1. Simple allocator has average update cost O(ε−2/3); our full
allocator achieves worst-case expected update cost Õ(ε−1/2).

2. Simple allocator requires item sizes to be in [ε, 2ε].

Solution ideas:

• Use Kuszmaul’s Allocator to handle items with size < ε4.

• Main difficulty is extending simple allocator to handle sizes [ε4, 1].



Extending to Our Full Allocator

Limitations of the simple allocator:

1. Simple allocator has average update cost O(ε−2/3); our full
allocator achieves worst-case expected update cost Õ(ε−1/2).

2. Simple allocator requires item sizes to be in [ε, 2ε].

Solution ideas:

• Use Kuszmaul’s Allocator to handle items with size < ε4.

• Main difficulty is extending simple allocator to handle sizes [ε4, 1].



Extending to Our Full Allocator

Limitations of the simple allocator:

1. Simple allocator has average update cost O(ε−2/3); our full
allocator achieves worst-case expected update cost Õ(ε−1/2).

2. Simple allocator requires item sizes to be in [ε, 2ε].

Solution ideas:

• Use Kuszmaul’s Allocator to handle items with size < ε4.

• Main difficulty is extending simple allocator to handle sizes [ε4, 1].



Extending to Our Full Allocator

Limitations of the simple allocator:

1. Simple allocator has average update cost O(ε−2/3); our full
allocator achieves worst-case expected update cost Õ(ε−1/2).

2. Simple allocator requires item sizes to be in [ε, 2ε].

Solution ideas:

• Use Kuszmaul’s Allocator to handle items with size < ε4.

• Main difficulty is extending simple allocator to handle sizes [ε4, 1].



Extending to Our Full Allocator

Limitations of the simple allocator:

1. Simple allocator has average update cost O(ε−2/3); our full
allocator achieves worst-case expected update cost Õ(ε−1/2).

2. Simple allocator requires item sizes to be in [ε, 2ε].

Solution ideas:

• Use Kuszmaul’s Allocator to handle items with size < ε4.

• Main difficulty is extending simple allocator to handle sizes [ε4, 1].



Extending to Our Full Allocator

Limitations of the simple allocator:

1. Simple allocator has average update cost O(ε−2/3); our full
allocator achieves worst-case expected update cost Õ(ε−1/2).

2. Simple allocator requires item sizes to be in [ε, 2ε].

Solution ideas:

• Use Kuszmaul’s Allocator to handle items with size < ε4.

• Main difficulty is extending simple allocator to handle sizes [ε4, 1].



Extending to Our Full Allocator

Extending our simple allocator to handle sizes [ε4, 1]:

• Too broad a size range to use uniformly-sized size classes.

• Use geometric size classes [s, s · (1 + ε)].

• With geometric size classes, larger size classes waste more space
than smaller size classes.

• Further complication: rearranging items costs more when
performed on small item updates.

Solutions:

• Create nested covering sets.

• Number of items allowed in each size class is inversely
proportional to the item size.

• Randomized rebuilds.



Extending to Our Full Allocator

Extending our simple allocator to handle sizes [ε4, 1]:

• Too broad a size range to use uniformly-sized size classes.

• Use geometric size classes [s, s · (1 + ε)].

• With geometric size classes, larger size classes waste more space
than smaller size classes.

• Further complication: rearranging items costs more when
performed on small item updates.

Solutions:

• Create nested covering sets.

• Number of items allowed in each size class is inversely
proportional to the item size.

• Randomized rebuilds.



Extending to Our Full Allocator

Extending our simple allocator to handle sizes [ε4, 1]:

• Too broad a size range to use uniformly-sized size classes.

• Use geometric size classes [s, s · (1 + ε)].

• With geometric size classes, larger size classes waste more space
than smaller size classes.

• Further complication: rearranging items costs more when
performed on small item updates.

Solutions:

• Create nested covering sets.

• Number of items allowed in each size class is inversely
proportional to the item size.

• Randomized rebuilds.



Extending to Our Full Allocator

Extending our simple allocator to handle sizes [ε4, 1]:

• Too broad a size range to use uniformly-sized size classes.

• Use geometric size classes [s, s · (1 + ε)].

• With geometric size classes, larger size classes waste more space
than smaller size classes.

• Further complication: rearranging items costs more when
performed on small item updates.

Solutions:

• Create nested covering sets.

• Number of items allowed in each size class is inversely
proportional to the item size.

• Randomized rebuilds.



Extending to Our Full Allocator

Extending our simple allocator to handle sizes [ε4, 1]:

• Too broad a size range to use uniformly-sized size classes.

• Use geometric size classes [s, s · (1 + ε)].

• With geometric size classes, larger size classes waste more space
than smaller size classes.

• Further complication: rearranging items costs more when
performed on small item updates.

Solutions:

• Create nested covering sets.

• Number of items allowed in each size class is inversely
proportional to the item size.

• Randomized rebuilds.



Extending to Our Full Allocator

Extending our simple allocator to handle sizes [ε4, 1]:

• Too broad a size range to use uniformly-sized size classes.

• Use geometric size classes [s, s · (1 + ε)].

• With geometric size classes, larger size classes waste more space
than smaller size classes.

• Further complication: rearranging items costs more when
performed on small item updates.

Solutions:

• Create nested covering sets.

• Number of items allowed in each size class is inversely
proportional to the item size.

• Randomized rebuilds.



Extending to Our Full Allocator

Extending our simple allocator to handle sizes [ε4, 1]:

• Too broad a size range to use uniformly-sized size classes.

• Use geometric size classes [s, s · (1 + ε)].

• With geometric size classes, larger size classes waste more space
than smaller size classes.

• Further complication: rearranging items costs more when
performed on small item updates.

Solutions:

• Create nested covering sets.

• Number of items allowed in each size class is inversely
proportional to the item size.

• Randomized rebuilds.



Extending to Our Full Allocator

Extending our simple allocator to handle sizes [ε4, 1]:

• Too broad a size range to use uniformly-sized size classes.

• Use geometric size classes [s, s · (1 + ε)].

• With geometric size classes, larger size classes waste more space
than smaller size classes.

• Further complication: rearranging items costs more when
performed on small item updates.

Solutions:

• Create nested covering sets.

• Number of items allowed in each size class is inversely
proportional to the item size.

• Randomized rebuilds.



Can we Outperform Õ(ε−1/2)?

Seems challenging to extend current techniques.

However, we can improve substantially in interesting special cases.

Definition

Stochastic Items: Alternating inserts of items with random sizes
and deletes of random items.

Theorem

There is an allocator for stochastic items of sizes in [ε, 2ε) with
worst-case expected update cost O(log ε−1).



Can we Outperform Õ(ε−1/2)?

Seems challenging to extend current techniques.
However, we can improve substantially in interesting special cases.

Definition

Stochastic Items: Alternating inserts of items with random sizes
and deletes of random items.

Theorem

There is an allocator for stochastic items of sizes in [ε, 2ε) with
worst-case expected update cost O(log ε−1).



Can we Outperform Õ(ε−1/2)?

Seems challenging to extend current techniques.
However, we can improve substantially in interesting special cases.

Definition

Stochastic Items: Alternating inserts of items with random sizes
and deletes of random items.

Theorem

There is an allocator for stochastic items of sizes in [ε, 2ε) with
worst-case expected update cost O(log ε−1).



Can we Outperform Õ(ε−1/2)?

Seems challenging to extend current techniques.
However, we can improve substantially in interesting special cases.

Definition

Stochastic Items: Alternating inserts of items with random sizes
and deletes of random items.

Theorem

There is an allocator for stochastic items of sizes in [ε, 2ε) with
worst-case expected update cost O(log ε−1).



Stochastic Items — Proof Ideas

• When an item is deleted, group it together with a set of
Θ(log ε−1) surrounding items, and call the size of this group y .

• A random set of Θ(log ε−1) items has good probability of having
a subset sum which is close to y .

• Replace the deleted item and its group with a subset of a block
near the end of memory.

• Compact the end of memory.



Main Open Question

Many cases where O(log ε−1) expected update cost is possible:

• Small items

• Stochastic items

• Few distinct types of items



Main Open Question

Many cases where O(log ε−1) expected update cost is possible:

• Small items

• Stochastic items

• Few distinct types of items



Main Open Question

Many cases where O(log ε−1) expected update cost is possible:

• Small items

• Stochastic items

• Few distinct types of items



Main Open Question

Many cases where O(log ε−1) expected update cost is possible:

• Small items

• Stochastic items

• Few distinct types of items



Main Open Question

Many cases where O(log ε−1) expected update cost is possible:

• Small items

• Stochastic items

• Few distinct types of items

Lower Bounds?

Theorem

There is no “resizable” allocator with expected update cost
o(log ε−1).



Main Open Question

Many cases where O(log ε−1) expected update cost is possible:

• Small items

• Stochastic items

• Few distinct types of items

Question

Is there an allocator with expected update cost o(ε−1/2)?


