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Problem Motivation

Engineer wants to perform tasks on a parallel machine.
Needs to choose an implementation for each task.

1. Parallel implementation:
work inefficient
parallelizable

2. Serial implementation:
work efficient, parallelism across tasks
not parallelizable

Which implementations should the engineer use?

Our answer:

Engineer writes a serial and parallel implementation for each task
and lets the scheduler decide which implementations to use.

This motivates the algorithmic problem that we consider.
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Defining The Serial Parallel Decision Problem

At each time step: allocate p processors to jobs.
(Serial job = at most one processor at a time.)
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Defining The Serial Parallel Decision Problem

Completion criterion: Suppose job i has work w € {mj,0;}.
Let x;(t) denote the number of processors allocated to job i at time
t. Job i is completed once fOT xi(t)dt = w.
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Defining The Serial Parallel Decision Problem

We require m;/p < o; < ;.
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Defining The Serial Parallel Decision Problem

We've now described the model.

Next: discuss the scheduler’'s objectives.
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Metric 1: Awake Time

Amount of time when there are uncompleted tasks.
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Metric 2: Mean Response Time (MRT)

Average time between receiving a task and completing it.
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Average time between receiving a task and completing it.

preempt blue task to
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time for response time
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We've now described the metrics.
Next: main results.




Main Results

Theorem 1

There is an O(1)-competitive scheduler for awake time.

Theorem 2

There is an O(1)-competitive scheduler for MRT, with O(1)-speed
augmentation.

Next: Awake time specific results.
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Optimizing Awake Time with Additional Restrictions

Theorem 3

There is a 3-competitive decide on arrival scheduler for awake
time.

Theorem 4

There is a 6-competitive parallel work oblivious scheduler for
awake time.

Remainder of Talk:
Description and analysis of parallel work oblivious scheduler.



Defining the Scheduler

Scheduler PRO (procrastinator) chooses its jobs as follows:

® |f the time since some task / arrived is larger than task i's serial
work, but task i hasn't been started yet, start task / in serial.

® |f there are idle processors and unstarted tasks, choose an
arbitrary task to start in parallel.

T1
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Defining the Scheduler

At each time step, PRO allocates processors to its chosen jobs as
follows:

® Allocate a processor to all serial jobs, or the p serial jobs with the
most remaining work if there are more than p serial jobs.

® Allocate any remaining processors to the single running parallel
job, if there is any such job.

Next: Proof outline.
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Proof Outline

Theorem 5

PRO is 6-competitive for awake time.

WLOG: consider task sequences where PRO always has at least
one uncompleted task present.

Proof outline:

1. Show that at PRO is saturated — i.e., has no idle processors —
at least half of the time.

2. Bound the amount of work that PRO takes.

S; saturated intervals

U; unsaturated intervals

S1 U; Ss Us S3 Us Ss Uy



Analysis of PRO

Lemma 6
PRO is saturated at least 1/2 of the time.

Proof: Let S/ be a copy of S;, shifted to start at the end of S;.
We claim that J; U; € Uy Si-
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Lemma Proof Sketch
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Finishing the Analysis of PRO

TopT: optimal awake time on the tasks.
Lemma 7

PRO takes at most 3pTopt work.

Proof omitted due to time.

Theorem 8

PRO is a 6-competitive parallel work oblivious scheduler for awake
time.

Proof: PRO is saturated for at least 1/2 of its time steps, and has
at most 3Topt saturated time steps. O



Open Questions

Awake Time

model lower bound best algorithm
vanilla 1.618—-0(1/p) | 2
decide on arrival 2—-0(1/p) 3
parallel work oblivious | 2 — O(1/p) 6
randomized 1.18—0(1/p) |2

Mean Response Time

model lower bound | best algorithm
O(1) speed augmentation 7 0o(1)
decide on arrival 7
p:?rallel work oblivious _ Q(p'/4)
with O(1) speed augmentation
non-preemptive 00
77

no speed augmentation




Extra slides



Decide on Arrival Scheduler



Decide on Arrival Scheduler Definition
Fix TAP 7, 1,...,7h.
Definition 9

CQLG: completion time of scheduler ALG on tasks 71,7, ..., 7;.

Scheduler BAL: When task 7; arrives,
e Ifog;+t > C{BAL run 7; in serial.

® FElse, run 7; in parallel.



Depiction of BAL
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Figure: Serial job is too large: BAL chooses parallel job




Depiction of BAL
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Figure: BAL chooses a serial job

Observe BAL is always “balanced’: never has idle processors.
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Key Invariant

Let OPT denote the optimal schedule of 71, 7,...,7,.
Important: OPT is not optimal on the first / tasks, is
optimal overall.

Let K{pt denote the work of OPT on the first i tasks.

Lemma 10

CiaL < 2Copr + Kopr/p.

Immediate corollary: BAL is 3-competitive for completion time.
(Later: extend to awake time.)



Proof of Key Invariant

Assume
i1 i1 i1
Coal < 2Copt + Kopr/P-

Case 1: BAL runs 7; in serial.

ChaL = CpaL +0i/p
< 2Copr + (Kopr +01)/p
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Proof of Key Invariant

Assume
i1 i1 i1
Coal < 2Copt + Kopr/P-

Case 2: BAL and OPT both run 7; in parallel.

ChaL = CaL + /P
< 2Copr + (Kopr +1)/p
< 2Copt + Kopr/p-



Proof of Key Invariant

Assume
i1 i1 i1
Coal < 2Copt + Kopr/P-

Case 3: BAL runs 7; in parallel, OPT runs 7; in serial.
7; was too large for BAL to run in serial, but OPT ran 7; in serial:

. -
Copt =2 0i+ ti > Cgpy -

Thus,
ChaL = ChaL + /P
< Copr +0i
< 2Copr-



Extending To Awake Time

OPT awake intervals

N"_
T_

BAL may have left-over
work from the previous
OPT awake interval

Solution: if BAL starts an awake interval with more work BAL
wont get further behind on this extra work.



Extending to Awake Time

Lemma 11

If BAL starts (balanced) with B extra work and then handles the
same TAP as OPT then

CgaL < 3CopT + B/p.



Extending to Awake Time

Theorem 12

BAL is a 3-competitive decide on arrival scheduler for awake time.

T1 T2 T3

Ll Y : f———— L3
2

L — Bi/p By /p
B, By

T,,T5,T3: OPT completion times L1 <3T7+0

L1, Ly, L3: BAL completion times Ly < 3Ty, + By/p
L: BAL total completion time L3 <3T5;+ By/p
B, By: extra work

L=L,—-By/p+Ly—By/p+ L3 <3(T1 + Tz + T3)



Parallel Work Oblivious Scheduler — Analysis



Analysis of PRO

Saturated time step: no idle processors.

S; saturated intervals

U; unsaturated intervals

S1 Ui S2 U, Ss
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Analysis of PRO

Lemma 13
PRO is saturated at least 1/2 of the time.

Proof: Let S/ be a copy of S;, shifted to start at the end of S;.
We claim that J; U; € Uy Si-
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Lemma: PRO is saturated at least 1/2 the time

Claim 1

Let w be maximum over tasks i present at the start of U; of the
serial work remaining on task i. Then, |U;j| < w.

Proof:

1

unsaturated interval U. j



Lemma: PRO is saturated at least 1/2 the time

Claim 2 (2)

Suppose task i is started in serial during saturated interval S;.
Then, |Sj| > 0.

Proof:

saturated interval S



Lemma: PRO is saturated at least 1/2 the time

Claim 3 (3)

Suppose that task i is started in serial at time t and runs during an
unsaturated interval U; = [a, b]. Then task i is allocated a
processor at each step in [t, a].

Proof: If serial task i gets work stolen from it at some time t,
then PRO must have p serial tasks with at least as much
remaining work as task i at time t. Then, PRO will remain
saturated (at least) until task i is finished.
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Corollary 14

For each unsaturated interval U;, there is a saturated interval Sy
such that U; C S, .
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Lemma: PRO is saturated at least 1/2 the time

Corollary 14

For each unsaturated interval U;, there is a saturated interval Sy
such that U; C S, .

Proof:

Task i = serial job with largest remaining work at beginning of U;.
S, = the saturated interval when task / was started.

Let U; = [a, b], let t € Sk be the time when task / is started.

® Claim 3 = task i runs on every time step in [t, b].

So task i has at most o; — (a — t) work left at the start of U;.
Then, Claim 1 = |Uj| <o;—(a—t).
SoUjCla,a+oi—(a—t)]=a,t+0] C[t,t+ 0

Claim2 = [S| > o

So U; C [t, t + |Sk]]. O



Lemma: PRO is saturated at least 1/2 the time
We have shown (J; U; € Uy S, which gives:

Lemma 15
PRO is saturated at least 1/2 of the time.
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Lemma: PRO is saturated at least 1/2 the time
We have shown (J; U; € Uy S, which gives:

Lemma 15
PRO is saturated at least 1/2 of the time.

S} Si
S S

S1 U S2 U: Ss3 Us S4 Uy

Next: bound saturated time by analyzing PRO’s work.
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Lemma: PRQO's saturated time is at most 3Topt
TopT: optimal awake time on the tasks.

Lemma 16

The amount of time that PRO is saturated is at most 3T gpT.

Proof idea:
Bound work on each of four (non-exclusive) categories of tasks 7:

1. PRO runs 7 is serial.
2. PRO runs 7 in parallel starting after OPT finishes 7.

3. PRO runs 7 in parallel completely during times when OPT has
uncompleted tasks.

4. PRO runs 7 in parallel starting before OPT finishes 7, but PRO's
execution of 7 overlaps with a time when OPT has no
uncompleted tasks.



PRO Analysis — Type 1 and 2 Tasks

Type 1: PRO runs 7 is serial.
Type 2: PRO runs 7 in parallel starting after OPT finishes 7.

Claim 4 (1,2)
PRO spends at most pTopt work on tasks of types (1) and (2).
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Type 2: PRO runs 7 in parallel starting after OPT finishes 7.
Proof: If 7; is a type (2) task then OPT finishes 7; faster than o,
or else PRO would have started 7; in serial. Thus, OPT must run
type (2) tasks in parallel.
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OPT starts 7, here = OPT ran in parallel



PRO Analysis — Type 1 and 2 Tasks

Type 1: PRO runs 7 is serial.

Type 2: PRO runs 7 in parallel starting after OPT finishes 7.
Proof: If 7; is a type (2) task then OPT finishes 7; faster than o,
or else PRO would have started 7; in serial. Thus, OPT must run
type (2) tasks in parallel.

T2

OPT starts 7, here = OPT ran in parallel

Thus, the total work performed by OPT is at least the sum of ;
for type (2) tasks and o; for type (1) tasks.



PRO Analysis — Type 3 Tasks

Type 3: PRO runs 7 in parallel completely during times when OPT
has uncompleted tasks.

Claim 4 (3)
PRO spends at most pTopt work on tasks of types (3).

Proof: Clear.



PRO Analysis — Type 4 Tasks

Type 4: PRO runs 7 in parallel starting before OPT finishes 7, but
PRQ'’s execution of T overlaps with a time when OPT has no
uncompleted tasks.

Claim 5 (4)

PRO spends at most pTopt work on tasks of types (4).



PRO Analysis — Type 4 Tasks

Type 4: PRO runs 7 in parallel starting before OPT finishes 7, but
PRQ'’s execution of T overlaps with a time when OPT has no
uncompleted tasks.

Proof: For each OPT awake interval [ there is at most one type
(4) task that starts during / in parallel and runs past the end of /.
The length of / is at least 7;/p for this type (4) task.



PRO Analysis — Type 4 Tasks

Type 4: PRO runs 7 in parallel starting before OPT finishes 7, but
PRQ'’s execution of T overlaps with a time when OPT has no
uncompleted tasks.

UNK runs at most
one parallel task at a time

l -
o——

T4

<
%)
<

-l -

3

PT awake interval OPT awake interval
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> m4/p



PRO Analysis: Combining the Lemmas

Theorem 17

PRO is a 6-competitive parallel work oblivious scheduler for awake
time.



PRO Analysis: Combining the Lemmas

Theorem 17

PRO is a 6-competitive parallel work oblivious scheduler for awake
time.

Proof: PRO is saturated for at least 1/2 of its time steps, and has
at most 3TgpT saturated time steps. ]



