Scheduling Jobs with Work-Inefficient Parallel Solutions

William Kuszmaul¹, Alek Westover²

Harvard¹, MIT^2

SPAA 2024

Engineer wants to perform tasks on a parallel machine. Needs to choose an implementation for each task.

Engineer wants to perform tasks on a parallel machine. Needs to choose an implementation for each task.

1. Parallel implementation:

work inefficient parallelizable

Engineer wants to perform tasks on a parallel machine. Needs to choose an implementation for each task.

- 1. Parallel implementation: work inefficient parallelizable
- Serial implementation: work efficient, parallelism across tasks not parallelizable

Engineer wants to perform tasks on a parallel machine. Needs to choose an implementation for each task.

- 1. Parallel implementation: work inefficient parallelizable
- Serial implementation: work efficient, parallelism across tasks not parallelizable

Which implementations should the engineer use?

Engineer wants to perform tasks on a parallel machine. Needs to choose an implementation for each task.

- 1. Parallel implementation: work inefficient parallelizable
- Serial implementation: work efficient, parallelism across tasks not parallelizable

Which implementations should the engineer use?

Our answer:

Engineer writes a serial and parallel implementation for each task and lets the *scheduler* decide which implementations to use.

Engineer wants to perform tasks on a parallel machine. Needs to choose an implementation for each task.

- 1. Parallel implementation: work inefficient parallelizable
- Serial implementation: work efficient, parallelism across tasks not parallelizable

Which implementations should the engineer use?

Our answer:

Engineer writes a serial and parallel implementation for each task and lets the *scheduler* decide which implementations to use.

This motivates the algorithmic problem that we consider.

- Input: Set of *n* tasks (σ_i, π_i, t_i)
- σ_i = serial work, π_i = parallel work, t_i = arrival time.
- Output: serial/parallel decisions and job schedule.

- Input: Set of *n* tasks (σ_i, π_i, t_i)
- σ_i = serial work, π_i = parallel work, t_i = arrival time.
- Output: serial/parallel decisions and job schedule.

At each time step: allocate p processors to jobs. (Serial job \implies at most one processor at a time.)

Completion criterion: Suppose job *i* has work $w \in \{\pi_i, \sigma_i\}$. Let $x_i(t)$ denote the number of processors allocated to job *i* at time *t*. Job *i* is completed once $\int_0^T x_i(t) dt = w$.

We require $\pi_i / p \leq \sigma_i \leq \pi_i$.

We've now described the model. **Next**: discuss the scheduler's objectives.

Metric 1: Awake Time

Amount of time when there are uncompleted tasks.

Metric 1: Awake Time

Amount of time when there are uncompleted tasks.

Metric 2: Mean Response Time (MRT)

Average time between receiving a task and completing it.

Metric 2: Mean Response Time (MRT)

Average time between receiving a task and completing it.

Metric 2: Mean Response Time (MRT)

Average time between receiving a task and completing it.

We've now described the metrics. **Next**: main results.

Main Results

Theorem 1

There is an O(1)-competitive scheduler for awake time.

Theorem 2

There is an O(1)-competitive scheduler for MRT, with O(1)-speed augmentation.

Next: Awake time specific results.

Optimizing Awake Time with Additional Restrictions

Theorem 3

There is a 3-competitive **decide on arrival** scheduler for awake time.

Optimizing Awake Time with Additional Restrictions

Theorem 3

There is a 3-competitive **decide on arrival** scheduler for awake time.

Theorem 4

There is a 6-competitive **parallel work oblivious** scheduler for awake time.

Remainder of Talk:

Description and analysis of parallel work oblivious scheduler.

Defining the Scheduler

Scheduler PRO (procrastinator) chooses its jobs as follows:

- If the time since some task *i* arrived is larger than task *i*'s serial work, but task *i* hasn't been started yet, start task *i* in serial.
- If there are idle processors and unstarted tasks, choose an arbitrary task to start in parallel.

Defining the Scheduler

At each time step, PRO allocates processors to its chosen jobs as follows:

- Allocate a processor to all serial jobs, or the *p* serial jobs with the most remaining work if there are more than *p* serial jobs.
- Allocate any remaining processors to the single running parallel job, if there is any such job.
 - Next: Proof outline.

Theorem 5

PRO is 6-competitive for awake time.

WLOG: consider task sequences where PRO always has at least one uncompleted task present.

 $U_1 S_2$

 U_2

 S_3

 U_3

 $S_{4} U_{4}$

- S_i saturated intervals
- $m{U_i}$ unsaturated intervals

Theorem 5

PRO is 6-competitive for awake time.

WLOG: consider task sequences where PRO always has at least one uncompleted task present.

Proof outline:

 $\boldsymbol{S_i}$ saturated intervals

 $m{U_i}$ unsaturated intervals

Theorem 5

PRO is 6-competitive for awake time.

WLOG: consider task sequences where PRO always has at least one uncompleted task present.

Proof outline:

1. Show that at PRO is *saturated* — i.e., has no idle processors — at least half of the time.

 U_{2}

 $U_1 S_2$

 S_3

 U_{2}

 $S_4 U_4$

- $\boldsymbol{S_i}$ saturated intervals
- $m{U_i}$ unsaturated intervals

Theorem 5

PRO is 6-competitive for awake time.

WLOG: consider task sequences where PRO always has at least one uncompleted task present.

Proof outline:

1. Show that at PRO is *saturated* — i.e., has no idle processors — at least half of the time.

 U_{2}

 S_3

 U_{2}

SA UA

2. Bound the amount of work that PRO takes.

 $U_1 S_2$

- $\boldsymbol{S_i}$ saturated intervals
- $m{U_i}$ unsaturated intervals

Analysis of PRO

Lemma 6

PRO is saturated at least 1/2 of the time.

Proof: Let S'_i be a copy of S_i , shifted to start at the end of S_i . We claim that $\bigcup_i U_j \subseteq \bigcup_k S'_k$.

Lemma Proof Sketch

Lemma Proof Sketch

Lemma Proof Sketch

Finishing the Analysis of PRO

 $T_{\mbox{\scriptsize OPT}}$: optimal awake time on the tasks.

Lemma 7

PRO takes at most 3pT_{OPT} work.

Proof omitted due to time.

Theorem 8

PRO is a 6-competitive parallel work oblivious scheduler for awake time.

Proof: PRO is saturated for at least 1/2 of its time steps, and has at most $3T_{OPT}$ saturated time steps.

Open Questions

Awake Time

model	lower bound	best algorithm
vanilla	1.618 - O(1/p)	2
decide on arrival	2 - O(1/p)	3
parallel work oblivious	2 - O(1/p)	6
randomized	1.18 - O(1/p)	2

Mean Response Time

model	lower bound	best algorithm
O(1) speed augmentation	??	<i>O</i> (1)
decide on arrival	??	
parallel work oblivious	$\Omega(p^{1/4})$	
with $O(1)$ speed augmentation	$\left \frac{32(p^{\prime})}{2} \right $	
non-preemptive	∞	
no speed augmentation	??	

Extra slides

Decide on Arrival Scheduler

Decide on Arrival Scheduler Definition

Fix TAP $\tau_1, \tau_2, \ldots, \tau_n$.

Definition 9

 C^{i}_{ALG} : completion time of scheduler ALG on tasks $\tau_1, \tau_2, \ldots, \tau_i$.

Scheduler BAL: When task τ_i arrives,

- If $\sigma_i + t_i \ge C_{BAL}^i$ run τ_i in serial.
- Else, run τ_i in parallel.

Depiction of BAL

Figure: Serial job is too large: BAL chooses parallel job

Depiction of BAL

Figure: BAL chooses a serial job

Observe BAL is always "balanced": never has idle processors.

Key Invariant

Let OPT denote the optimal schedule of $\tau_1, \tau_2, \ldots, \tau_n$. Important: OPT is not optimal on the first *i* tasks, is optimal overall.

Let K_{OPT}^{i} denote the work of OPT on the first *i* tasks.

Key Invariant

Let OPT denote the optimal schedule of $\tau_1, \tau_2, \ldots, \tau_n$. Important: OPT is not optimal on the first *i* tasks, is optimal overall.

Let K_{OPT}^i denote the work of OPT on the first *i* tasks.

Lemma 10

$$C^i_{BAL} \le 2C^i_{OPT} + K^i_{OPT}/p.$$

Key Invariant

Let OPT denote the optimal schedule of $\tau_1, \tau_2, \ldots, \tau_n$. Important: OPT is not optimal on the first *i* tasks, is optimal overall.

Let K_{OPT}^i denote the work of OPT on the first *i* tasks.

Lemma 10

$$C_{BAL}^i \leq 2C_{OPT}^i + K_{OPT}^i/p.$$

Immediate corollary: BAL is 3-competitive for completion time. (Later: extend to awake time.)

Proof of Key Invariant

Assume

$$C_{BAL}^{i-1} \leq 2C_{OPT}^{i-1} + K_{OPT}^{i-1}/p.$$

Case 1: BAL runs τ_i in serial.

$$\begin{split} \mathsf{C}_{\mathsf{BAL}}^{i} &= \mathsf{C}_{\mathsf{BAL}}^{i-1} + \sigma_i / p \\ &\leq 2\mathsf{C}_{\mathsf{OPT}}^{i-1} + (\mathsf{K}_{\mathsf{OPT}}^{i-1} + \sigma_i) / p \\ &\leq 2\mathsf{C}_{\mathsf{OPT}}^{i} + \mathsf{K}_{\mathsf{OPT}}^{i} / p. \end{split}$$

Proof of Key Invariant

Assume

$$\mathsf{C}_{\mathsf{BAL}}^{i-1} \leq 2\mathsf{C}_{\mathsf{OPT}}^{i-1} + \mathsf{K}_{\mathsf{OPT}}^{i-1}/p.$$

Case 2: BAL and OPT both run τ_i in parallel.

$$\begin{split} \mathsf{C}_{\mathsf{BAL}}^{i} &= \mathsf{C}_{\mathsf{BAL}}^{i-1} + \pi_i / p \\ &\leq 2\mathsf{C}_{\mathsf{OPT}}^{i-1} + (\mathsf{K}_{\mathsf{OPT}}^{i-1} + \pi_i) / p \\ &\leq 2\mathsf{C}_{\mathsf{OPT}}^{i} + \mathsf{K}_{\mathsf{OPT}}^{i} / p. \end{split}$$

Proof of Key Invariant

Assume

$$\mathsf{C}_{\mathsf{BAL}}^{i-1} \leq 2\mathsf{C}_{\mathsf{OPT}}^{i-1} + \mathsf{K}_{\mathsf{OPT}}^{i-1}/p.$$

Case 3: BAL runs τ_i in parallel, OPT runs τ_i in serial. τ_i was too large for BAL to run in serial, but OPT ran τ_i in serial:

$$C_{OPT}^{i} \geq \sigma_{i} + t_{i} \geq C_{BAL}^{i-1}$$
.

Thus,

$$\begin{aligned} \mathsf{C}^{i}_{\mathsf{BAL}} &= \mathsf{C}^{i-1}_{\mathsf{BAL}} + \pi_i / p \\ &\leq \mathsf{C}^{i}_{\mathsf{OPT}} + \sigma_i \\ &\leq 2\mathsf{C}^{i}_{\mathsf{OPT}}. \end{aligned}$$

Extending To Awake Time

Solution: if BAL starts an awake interval with more work BAL wont get further behind on this extra work.

Extending to Awake Time

Lemma 11

If BAL starts (balanced) with B extra work and then handles the same TAP as OPT then

 $C_{BAL} \leq 3C_{OPT} + B/p.$

Extending to Awake Time

Theorem 12

BAL is a 3-competitive decide on arrival scheduler for awake time.

 T_1, T_2, T_3 : OPT completion times $L_1 < 3T_1 + 0$ L_1, L_2, L_3 : BAL completion times $L_2 \leq 3T_2 + B_1/p$ L: BAL total completion time B_1, B_2 : extra work

 $L_3 < 3T_3 + B_2/p$

 $L = L_1 - B_1/p + L_2 - B_2/p + L_3 < 3(T_1 + T_2 + T_3)$

Parallel Work Oblivious Scheduler – Analysis

Analysis of PRO

Saturated time step: no idle processors.

- S_i saturated intervals
- **U**_i unsaturated intervals

S_1	$U_1 S_2$	U_2	S_3	U_3	$S_4 U_4$

Analysis of PRO

Lemma 13

PRO is saturated at least 1/2 of the time.

Proof: Let S'_i be a copy of S_i , shifted to start at the end of S_i . We claim that $\bigcup_i U_j \subseteq \bigcup_k S'_k$.

Claim 1

Let w be maximum over tasks i present at the start of U_j of the serial work remaining on task i. Then, $|U_j| \le w$.

Proof:

Claim 2 (2)

Suppose task i is started in serial during saturated interval $S_j.$ Then, $|S_j| \geq \sigma_i.$

Proof:

Claim 3 (3)

Suppose that task *i* is started in serial at time *t* and runs during an unsaturated interval $U_j = [a, b]$. Then task *i* is allocated a processor at each step in [t, a].

Proof: If serial task *i* gets work stolen from it at some time *t*, then PRO must have *p* serial tasks with at least as much remaining work as task *i* at time *t*. Then, PRO will remain saturated (at least) until task *i* is finished.

Corollary 14

For each unsaturated interval U_j , there is a saturated interval S_k such that $U_j \subseteq S'_k$.

Corollary 14

For each unsaturated interval U_j , there is a saturated interval S_k such that $U_j \subseteq S'_k$.

Proof:

Corollary 14

For each unsaturated interval U_j , there is a saturated interval S_k such that $U_j \subseteq S'_k$.

Proof:

Task i = serial job with largest remaining work at beginning of U_j . S_k = the saturated interval when task i was started. Let $U_j = [a, b]$, let $t \in S_k$ be the time when task i is started.

• Claim 3 \implies task *i* runs on every time step in [t, b].

Corollary 14

For each unsaturated interval U_j , there is a saturated interval S_k such that $U_j \subseteq S'_k$.

Proof:

- Claim 3 \implies task *i* runs on every time step in [t, b].
- So task *i* has at most $\sigma_i (a t)$ work left at the start of U_j .

Corollary 14

For each unsaturated interval U_j , there is a saturated interval S_k such that $U_j \subseteq S'_k$.

Proof:

- Claim 3 \implies task *i* runs on every time step in [t, b].
- So task *i* has at most $\sigma_i (a t)$ work left at the start of U_j .
- Then, Claim 1 $\implies |U_j| \le \sigma_i (a t).$

Corollary 14

For each unsaturated interval U_j , there is a saturated interval S_k such that $U_j \subseteq S'_k$.

Proof:

- Claim 3 \implies task *i* runs on every time step in [t, b].
- So task *i* has at most $\sigma_i (a t)$ work left at the start of U_j .
- Then, Claim 1 $\implies |U_j| \le \sigma_i (a t).$
- So $U_j \subseteq [a, a + \sigma_i (a t)] = [a, t + \sigma_i] \subseteq [t, t + \sigma_i].$

Corollary 14

For each unsaturated interval U_j , there is a saturated interval S_k such that $U_j \subseteq S'_k$.

Proof:

- Claim 3 \implies task *i* runs on every time step in [t, b].
- So task *i* has at most $\sigma_i (a t)$ work left at the start of U_j .
- Then, Claim $1 \implies |U_j| \le \sigma_i (a-t)$.
- So $U_j \subseteq [a, a + \sigma_i (a t)] = [a, t + \sigma_i] \subseteq [t, t + \sigma_i].$
- Claim 2 \implies $|S_k| \ge \sigma_i$

Corollary 14

For each unsaturated interval U_j , there is a saturated interval S_k such that $U_j \subseteq S'_k$.

Proof:

- Claim 3 \implies task *i* runs on every time step in [t, b].
- So task *i* has at most $\sigma_i (a t)$ work left at the start of U_j .
- Then, Claim 1 $\implies |U_j| \le \sigma_i (a t).$
- So $U_j \subseteq [a, a + \sigma_i (a t)] = [a, t + \sigma_i] \subseteq [t, t + \sigma_i].$
- Claim 2 \implies $|S_k| \ge \sigma_i$
- So $U_j \subseteq [t, t + |S_k|].$

We have shown $\bigcup_i U_j \subseteq \bigcup_k S'_k$, which gives:

Lemma 15

PRO is saturated at least 1/2 of the time.

We have shown $\bigcup_i U_j \subseteq \bigcup_k S'_k$, which gives:

Lemma 15 PRO *is saturated at least* 1/2 *of the time.*

Next: bound saturated time by analyzing PRO's work.

 $T_{\mbox{\scriptsize OPT}}$: optimal awake time on the tasks.

Lemma 16

The amount of time that PRO is saturated is at most $3T_{OPT}$.

 T_{OPT} : optimal awake time on the tasks.

Lemma 16

The amount of time that PRO is saturated is at most $3T_{OPT}$.

Proof idea:

 T_{OPT} : optimal awake time on the tasks.

Lemma 16

The amount of time that PRO is saturated is at most $3T_{OPT}$.

Proof idea:

Bound work on each of four (non-exclusive) categories of tasks τ :

1. PRO runs τ is serial.

 T_{OPT} : optimal awake time on the tasks.

Lemma 16

The amount of time that PRO is saturated is at most $3T_{OPT}$.

Proof idea:

- 1. PRO runs τ is serial.
- 2. PRO runs τ in parallel starting after OPT finishes τ .

 T_{OPT} : optimal awake time on the tasks.

Lemma 16

The amount of time that PRO is saturated is at most $3T_{OPT}$.

Proof idea:

- 1. PRO runs τ is serial.
- 2. PRO runs τ in parallel starting after OPT finishes τ .
- 3. PRO runs τ in parallel completely during times when OPT has uncompleted tasks.

 $T_{\mbox{\scriptsize OPT}}$: optimal awake time on the tasks.

Lemma 16

The amount of time that PRO is saturated is at most $3T_{OPT}$.

Proof idea:

- 1. PRO runs τ is serial.
- 2. PRO runs τ in parallel starting after OPT finishes τ .
- 3. PRO runs τ in parallel completely during times when OPT has uncompleted tasks.
- 4. PRO runs τ in parallel starting before OPT finishes τ , but PRO's execution of τ overlaps with a time when OPT has no uncompleted tasks.

PRO Analysis — Type 1 and 2 Tasks

Type 1: PRO runs τ is serial.

Type 2: PRO runs τ in parallel starting after OPT finishes $\tau.$

Claim 4 (1,2)

PRO spends at most pT_{OPT} work on tasks of types (1) and (2).

PRO Analysis — Type 1 and 2 Tasks

Type 1: PRO runs τ is serial.

Type 2: PRO runs τ in parallel starting after OPT finishes τ . **Proof**: If τ_i is a type (2) task then OPT finishes τ_i faster than σ_i , or else PRO would have started τ_i in serial. Thus, OPT must run type (2) tasks in parallel.

PRO Analysis — Type 1 and 2 Tasks

Type 1: PRO runs τ is serial.

Type 2: PRO runs τ in parallel starting after OPT finishes τ . **Proof**: If τ_i is a type (2) task then OPT finishes τ_i faster than σ_i , or else PRO would have started τ_i in serial. Thus, OPT must run type (2) tasks in parallel.

Thus, the total work performed by OPT is at least the sum of π_i for type (2) tasks and σ_i for type (1) tasks.

PRO Analysis — Type 3 Tasks

Type 3: PRO runs τ in parallel completely during times when OPT has uncompleted tasks.

Claim 4 (3)

PRO spends at most pT_{OPT} work on tasks of types (3).

Proof: Clear.

PRO Analysis — Type 4 Tasks

Type 4: PRO runs τ in parallel starting before OPT finishes τ , but PRO's execution of τ overlaps with a time when OPT has no uncompleted tasks.

Claim 5 (4)

PRO spends at most pT_{OPT} work on tasks of types (4).

PRO Analysis — Type 4 Tasks

Type 4: PRO runs τ in parallel starting before OPT finishes τ , but PRO's execution of τ overlaps with a time when OPT has no uncompleted tasks.

Proof: For each OPT awake interval *I* there is at most one type (4) task that starts during *I* in parallel and runs past the end of *I*. The length of *I* is at least π_i/p for this type (4) task.

PRO Analysis — Type 4 Tasks

Type 4: PRO runs τ in parallel starting before OPT finishes τ , but PRO's execution of τ overlaps with a time when OPT has no uncompleted tasks.

PRO Analysis: Combining the Lemmas

Theorem 17

PRO is a 6-competitive parallel work oblivious scheduler for awake time.

PRO Analysis: Combining the Lemmas

Theorem 17

PRO is a 6-competitive parallel work oblivious scheduler for awake time.

Proof: PRO is saturated for at least 1/2 of its time steps, and has at most $3T_{OPT}$ saturated time steps.