
Scheduling Jobs with
Work-Inefficient Parallel Solutions

William Kuszmaul1, Alek Westover2

Harvard1, MIT2

SPAA 2024

Problem Motivation
Engineer wants to perform tasks on a parallel machine.
Needs to choose an implementation for each task.

1. Parallel implementation:
work inefficient
parallelizable

2. Serial implementation:
work efficient, parallelism across tasks
not parallelizable

Which implementations should the engineer use?
Our answer:
Engineer writes a serial and parallel implementation for each task
and lets the scheduler decide which implementations to use.

This motivates the algorithmic problem that we consider.

Problem Motivation
Engineer wants to perform tasks on a parallel machine.
Needs to choose an implementation for each task.

1. Parallel implementation:
work inefficient
parallelizable

2. Serial implementation:
work efficient, parallelism across tasks
not parallelizable

Which implementations should the engineer use?
Our answer:
Engineer writes a serial and parallel implementation for each task
and lets the scheduler decide which implementations to use.

This motivates the algorithmic problem that we consider.

Problem Motivation
Engineer wants to perform tasks on a parallel machine.
Needs to choose an implementation for each task.

1. Parallel implementation:
work inefficient
parallelizable

2. Serial implementation:
work efficient, parallelism across tasks
not parallelizable

Which implementations should the engineer use?
Our answer:
Engineer writes a serial and parallel implementation for each task
and lets the scheduler decide which implementations to use.

This motivates the algorithmic problem that we consider.

Problem Motivation
Engineer wants to perform tasks on a parallel machine.
Needs to choose an implementation for each task.

1. Parallel implementation:
work inefficient
parallelizable

2. Serial implementation:
work efficient, parallelism across tasks
not parallelizable

Which implementations should the engineer use?

Our answer:
Engineer writes a serial and parallel implementation for each task
and lets the scheduler decide which implementations to use.

This motivates the algorithmic problem that we consider.

Problem Motivation
Engineer wants to perform tasks on a parallel machine.
Needs to choose an implementation for each task.

1. Parallel implementation:
work inefficient
parallelizable

2. Serial implementation:
work efficient, parallelism across tasks
not parallelizable

Which implementations should the engineer use?
Our answer:
Engineer writes a serial and parallel implementation for each task
and lets the scheduler decide which implementations to use.

This motivates the algorithmic problem that we consider.

Problem Motivation
Engineer wants to perform tasks on a parallel machine.
Needs to choose an implementation for each task.

1. Parallel implementation:
work inefficient
parallelizable

2. Serial implementation:
work efficient, parallelism across tasks
not parallelizable

Which implementations should the engineer use?
Our answer:
Engineer writes a serial and parallel implementation for each task
and lets the scheduler decide which implementations to use.

This motivates the algorithmic problem that we consider.

Defining The Serial Parallel Decision Problem

• Input: Set of n tasks (σi , πi , ti)

• σi = serial work, πi = parallel work, ti = arrival time.
• Output: serial/parallel decisions and job schedule.

OR

 

  

  processors

Defining The Serial Parallel Decision Problem

• Input: Set of n tasks (σi , πi , ti)

• σi = serial work, πi = parallel work, ti = arrival time.
• Output: serial/parallel decisions and job schedule.

OR

 

  

  processors

Defining The Serial Parallel Decision Problem

At each time step: allocate p processors to jobs.
(Serial job =⇒ at most one processor at a time.)

OR

 

  

  processors

Defining The Serial Parallel Decision Problem

Completion criterion: Suppose job i has work w ∈ {πi , σi}.
Let xi(t) denote the number of processors allocated to job i at time
t. Job i is completed once

∫ T
0 xi(t)dt = w .

OR

 

  

  processors

Defining The Serial Parallel Decision Problem

We require πi/p ≤ σi ≤ πi .

OR

 

  

  processors

Defining The Serial Parallel Decision Problem

We’ve now described the model.
Next: discuss the scheduler’s objectives.

OR

 

  

  processors

Metric 1: Awake Time
Amount of time when there are uncompleted tasks.

completion time

awake time

Metric 1: Awake Time
Amount of time when there are uncompleted tasks.

completion time

awake time

Metric 2: Mean Response Time (MRT)
Average time between receiving a task and completing it.

preempt blue task to
handle smaller tasks

response
time for
blue task response time

for orange task

We’ve now described the metrics.
Next: main results.

Metric 2: Mean Response Time (MRT)
Average time between receiving a task and completing it.

preempt blue task to
handle smaller tasks

response
time for
blue task response time

for orange task

We’ve now described the metrics.
Next: main results.

Metric 2: Mean Response Time (MRT)
Average time between receiving a task and completing it.

preempt blue task to
handle smaller tasks

response
time for
blue task response time

for orange task

We’ve now described the metrics.
Next: main results.

Main Results

Theorem 1
There is an O(1)-competitive scheduler for awake time.

Theorem 2
There is an O(1)-competitive scheduler for MRT, with O(1)-speed
augmentation.

Next: Awake time specific results.

Optimizing Awake Time with Additional Restrictions

Theorem 3
There is a 3-competitive decide on arrival scheduler for awake
time.

Theorem 4
There is a 6-competitive parallel work oblivious scheduler for
awake time.

Remainder of Talk:
Description and analysis of parallel work oblivious scheduler.

Optimizing Awake Time with Additional Restrictions

Theorem 3
There is a 3-competitive decide on arrival scheduler for awake
time.

Theorem 4
There is a 6-competitive parallel work oblivious scheduler for
awake time.

Remainder of Talk:
Description and analysis of parallel work oblivious scheduler.

Defining the Scheduler
Scheduler PRO (procrastinator) chooses its jobs as follows:
• If the time since some task i arrived is larger than task i ’s serial

work, but task i hasn’t been started yet, start task i in serial.
• If there are idle processors and unstarted tasks, choose an

arbitrary task to start in parallel.

time

parallel

not yet started

serial

Defining the Scheduler
At each time step, PRO allocates processors to its chosen jobs as
follows:
• Allocate a processor to all serial jobs, or the p serial jobs with the

most remaining work if there are more than p serial jobs.
• Allocate any remaining processors to the single running parallel

job, if there is any such job.
Next: Proof outline.

Proof Outline

Theorem 5
PRO is 6-competitive for awake time.

WLOG: consider task sequences where PRO always has at least
one uncompleted task present.

Proof outline:
1. Show that at PRO is saturated — i.e., has no idle processors —

at least half of the time.
2. Bound the amount of work that PRO takes.

saturated intervals

unsaturated intervals

Proof Outline

Theorem 5
PRO is 6-competitive for awake time.

WLOG: consider task sequences where PRO always has at least
one uncompleted task present.

Proof outline:

1. Show that at PRO is saturated — i.e., has no idle processors —
at least half of the time.

2. Bound the amount of work that PRO takes.

saturated intervals

unsaturated intervals

Proof Outline

Theorem 5
PRO is 6-competitive for awake time.

WLOG: consider task sequences where PRO always has at least
one uncompleted task present.

Proof outline:
1. Show that at PRO is saturated — i.e., has no idle processors —

at least half of the time.

2. Bound the amount of work that PRO takes.

saturated intervals

unsaturated intervals

Proof Outline

Theorem 5
PRO is 6-competitive for awake time.

WLOG: consider task sequences where PRO always has at least
one uncompleted task present.

Proof outline:
1. Show that at PRO is saturated — i.e., has no idle processors —

at least half of the time.
2. Bound the amount of work that PRO takes.

saturated intervals

unsaturated intervals

Analysis of PRO

Lemma 6
PRO is saturated at least 1/2 of the time.

Proof: Let S ′
i be a copy of Si , shifted to start at the end of Si .

We claim that
⋃

j Uj ⊆
⋃

k S ′
k .

Lemma Proof Sketch

Lemma Proof Sketch

Lemma Proof Sketch

Finishing the Analysis of PRO
TOPT: optimal awake time on the tasks.

Lemma 7
PRO takes at most 3pTOPT work.

Proof omitted due to time.

Theorem 8
PRO is a 6-competitive parallel work oblivious scheduler for awake
time.

Proof: PRO is saturated for at least 1/2 of its time steps, and has
at most 3TOPT saturated time steps.

Open Questions
Awake Time

model lower bound best algorithm
vanilla 1.618 − O(1/p) 2
decide on arrival 2 − O(1/p) 3
parallel work oblivious 2 − O(1/p) 6
randomized 1.18 − O(1/p) 2

Mean Response Time

model lower bound best algorithm
O(1) speed augmentation ?? O(1)
decide on arrival ??
parallel work oblivious
with O(1) speed augmentation Ω(p1/4)

non-preemptive ∞
no speed augmentation ??

Extra slides

Decide on Arrival Scheduler

Decide on Arrival Scheduler Definition
Fix TAP τ1, τ2, . . . , τn.

Definition 9
Ci

ALG: completion time of scheduler ALG on tasks τ1, τ2, . . . , τi .

Scheduler BAL: When task τi arrives,
• If σi + ti ≥ Ci

BAL run τi in serial.
• Else, run τi in parallel.

Depiction of BAL

Figure: Serial job is too large: BAL chooses parallel job

Depiction of BAL

Figure: BAL chooses a serial job

Observe BAL is always “balanced”: never has idle processors.

Key Invariant
Let OPT denote the optimal schedule of τ1, τ2, . . . , τn.
Important: OPT is not optimal on the first i tasks, is
optimal overall.
Let K i

OPT denote the work of OPT on the first i tasks.

Lemma 10

Ci
BAL ≤ 2Ci

OPT + Ki
OPT/p.

Immediate corollary: BAL is 3-competitive for completion time.
(Later: extend to awake time.)

Key Invariant
Let OPT denote the optimal schedule of τ1, τ2, . . . , τn.
Important: OPT is not optimal on the first i tasks, is
optimal overall.
Let K i

OPT denote the work of OPT on the first i tasks.

Lemma 10

Ci
BAL ≤ 2Ci

OPT + Ki
OPT/p.

Immediate corollary: BAL is 3-competitive for completion time.
(Later: extend to awake time.)

Key Invariant
Let OPT denote the optimal schedule of τ1, τ2, . . . , τn.
Important: OPT is not optimal on the first i tasks, is
optimal overall.
Let K i

OPT denote the work of OPT on the first i tasks.

Lemma 10

Ci
BAL ≤ 2Ci

OPT + Ki
OPT/p.

Immediate corollary: BAL is 3-competitive for completion time.
(Later: extend to awake time.)

Proof of Key Invariant
Assume

Ci−1
BAL ≤ 2Ci−1

OPT + Ki−1
OPT/p.

Case 1: BAL runs τi in serial.

Ci
BAL = Ci−1

BAL + σi/p
≤ 2Ci−1

OPT + (Ki−1
OPT + σi)/p

≤ 2Ci
OPT + Ki

OPT/p.

Proof of Key Invariant
Assume

Ci−1
BAL ≤ 2Ci−1

OPT + Ki−1
OPT/p.

Case 2: BAL and OPT both run τi in parallel.

Ci
BAL = Ci−1

BAL + πi/p
≤ 2Ci−1

OPT + (Ki−1
OPT + πi)/p

≤ 2Ci
OPT + Ki

OPT/p.

Proof of Key Invariant
Assume

Ci−1
BAL ≤ 2Ci−1

OPT + Ki−1
OPT/p.

Case 3: BAL runs τi in parallel, OPT runs τi in serial.
τi was too large for BAL to run in serial, but OPT ran τi in serial:

Ci
OPT ≥ σi + ti ≥ Ci−1

BAL.

Thus,

Ci
BAL = Ci−1

BAL + πi/p
≤ Ci

OPT + σi

≤ 2Ci
OPT.

Extending To Awake Time

Solution: if BAL starts an awake interval with more work BAL
wont get further behind on this extra work.

Extending to Awake Time

Lemma 11
If BAL starts (balanced) with B extra work and then handles the
same TAP as OPT then

CBAL ≤ 3COPT + B/p.

Extending to Awake Time

Theorem 12
BAL is a 3-competitive decide on arrival scheduler for awake time.

Parallel Work Oblivious Scheduler – Analysis

Analysis of PRO
Saturated time step: no idle processors.

saturated intervals

unsaturated intervals

Analysis of PRO

Lemma 13
PRO is saturated at least 1/2 of the time.

Proof: Let S ′
i be a copy of Si , shifted to start at the end of Si .

We claim that
⋃

j Uj ⊆
⋃

k S ′
k .

Lemma: PRO is saturated at least 1/2 the time
Claim 1
Let w be maximum over tasks i present at the start of Uj of the
serial work remaining on task i . Then, |Uj | ≤ w .

Proof:

unsaturated interval

Lemma: PRO is saturated at least 1/2 the time

Claim 2 (2)
Suppose task i is started in serial during saturated interval Sj .
Then, |Sj | ≥ σi .

Proof:

saturated interval

Lemma: PRO is saturated at least 1/2 the time

Claim 3 (3)
Suppose that task i is started in serial at time t and runs during an
unsaturated interval Uj = [a, b]. Then task i is allocated a
processor at each step in [t, a].

Proof: If serial task i gets work stolen from it at some time t,
then PRO must have p serial tasks with at least as much
remaining work as task i at time t. Then, PRO will remain
saturated (at least) until task i is finished.

Lemma: PRO is saturated at least 1/2 the time

Corollary 14
For each unsaturated interval Uj , there is a saturated interval Sk
such that Uj ⊆ S ′

k .

Proof:
Task i = serial job with largest remaining work at beginning of Uj .
Sk = the saturated interval when task i was started.
Let Uj = [a, b], let t ∈ Sk be the time when task i is started.
• Claim 3 =⇒ task i runs on every time step in [t, b].
• So task i has at most σi − (a − t) work left at the start of Uj .
• Then, Claim 1 =⇒ |Uj | ≤ σi − (a − t).
• So Uj ⊆ [a, a + σi − (a − t)] = [a, t + σi] ⊆ [t, t + σi].

• Claim 2 =⇒ |Sk | ≥ σi
• So Uj ⊆ [t, t + |Sk |].

Lemma: PRO is saturated at least 1/2 the time

Corollary 14
For each unsaturated interval Uj , there is a saturated interval Sk
such that Uj ⊆ S ′

k .

Proof:
Task i = serial job with largest remaining work at beginning of Uj .
Sk = the saturated interval when task i was started.
Let Uj = [a, b], let t ∈ Sk be the time when task i is started.

• Claim 3 =⇒ task i runs on every time step in [t, b].
• So task i has at most σi − (a − t) work left at the start of Uj .
• Then, Claim 1 =⇒ |Uj | ≤ σi − (a − t).
• So Uj ⊆ [a, a + σi − (a − t)] = [a, t + σi] ⊆ [t, t + σi].

• Claim 2 =⇒ |Sk | ≥ σi
• So Uj ⊆ [t, t + |Sk |].

Lemma: PRO is saturated at least 1/2 the time

Corollary 14
For each unsaturated interval Uj , there is a saturated interval Sk
such that Uj ⊆ S ′

k .

Proof:
Task i = serial job with largest remaining work at beginning of Uj .
Sk = the saturated interval when task i was started.
Let Uj = [a, b], let t ∈ Sk be the time when task i is started.
• Claim 3 =⇒ task i runs on every time step in [t, b].

• So task i has at most σi − (a − t) work left at the start of Uj .
• Then, Claim 1 =⇒ |Uj | ≤ σi − (a − t).
• So Uj ⊆ [a, a + σi − (a − t)] = [a, t + σi] ⊆ [t, t + σi].

• Claim 2 =⇒ |Sk | ≥ σi
• So Uj ⊆ [t, t + |Sk |].

Lemma: PRO is saturated at least 1/2 the time

Corollary 14
For each unsaturated interval Uj , there is a saturated interval Sk
such that Uj ⊆ S ′

k .

Proof:
Task i = serial job with largest remaining work at beginning of Uj .
Sk = the saturated interval when task i was started.
Let Uj = [a, b], let t ∈ Sk be the time when task i is started.
• Claim 3 =⇒ task i runs on every time step in [t, b].
• So task i has at most σi − (a − t) work left at the start of Uj .

• Then, Claim 1 =⇒ |Uj | ≤ σi − (a − t).
• So Uj ⊆ [a, a + σi − (a − t)] = [a, t + σi] ⊆ [t, t + σi].

• Claim 2 =⇒ |Sk | ≥ σi
• So Uj ⊆ [t, t + |Sk |].

Lemma: PRO is saturated at least 1/2 the time

Corollary 14
For each unsaturated interval Uj , there is a saturated interval Sk
such that Uj ⊆ S ′

k .

Proof:
Task i = serial job with largest remaining work at beginning of Uj .
Sk = the saturated interval when task i was started.
Let Uj = [a, b], let t ∈ Sk be the time when task i is started.
• Claim 3 =⇒ task i runs on every time step in [t, b].
• So task i has at most σi − (a − t) work left at the start of Uj .
• Then, Claim 1 =⇒ |Uj | ≤ σi − (a − t).

• So Uj ⊆ [a, a + σi − (a − t)] = [a, t + σi] ⊆ [t, t + σi].

• Claim 2 =⇒ |Sk | ≥ σi
• So Uj ⊆ [t, t + |Sk |].

Lemma: PRO is saturated at least 1/2 the time

Corollary 14
For each unsaturated interval Uj , there is a saturated interval Sk
such that Uj ⊆ S ′

k .

Proof:
Task i = serial job with largest remaining work at beginning of Uj .
Sk = the saturated interval when task i was started.
Let Uj = [a, b], let t ∈ Sk be the time when task i is started.
• Claim 3 =⇒ task i runs on every time step in [t, b].
• So task i has at most σi − (a − t) work left at the start of Uj .
• Then, Claim 1 =⇒ |Uj | ≤ σi − (a − t).
• So Uj ⊆ [a, a + σi − (a − t)] = [a, t + σi] ⊆ [t, t + σi].

• Claim 2 =⇒ |Sk | ≥ σi
• So Uj ⊆ [t, t + |Sk |].

Lemma: PRO is saturated at least 1/2 the time

Corollary 14
For each unsaturated interval Uj , there is a saturated interval Sk
such that Uj ⊆ S ′

k .

Proof:
Task i = serial job with largest remaining work at beginning of Uj .
Sk = the saturated interval when task i was started.
Let Uj = [a, b], let t ∈ Sk be the time when task i is started.
• Claim 3 =⇒ task i runs on every time step in [t, b].
• So task i has at most σi − (a − t) work left at the start of Uj .
• Then, Claim 1 =⇒ |Uj | ≤ σi − (a − t).
• So Uj ⊆ [a, a + σi − (a − t)] = [a, t + σi] ⊆ [t, t + σi].

• Claim 2 =⇒ |Sk | ≥ σi

• So Uj ⊆ [t, t + |Sk |].

Lemma: PRO is saturated at least 1/2 the time

Corollary 14
For each unsaturated interval Uj , there is a saturated interval Sk
such that Uj ⊆ S ′

k .

Proof:
Task i = serial job with largest remaining work at beginning of Uj .
Sk = the saturated interval when task i was started.
Let Uj = [a, b], let t ∈ Sk be the time when task i is started.
• Claim 3 =⇒ task i runs on every time step in [t, b].
• So task i has at most σi − (a − t) work left at the start of Uj .
• Then, Claim 1 =⇒ |Uj | ≤ σi − (a − t).
• So Uj ⊆ [a, a + σi − (a − t)] = [a, t + σi] ⊆ [t, t + σi].

• Claim 2 =⇒ |Sk | ≥ σi
• So Uj ⊆ [t, t + |Sk |].

Lemma: PRO is saturated at least 1/2 the time
We have shown

⋃
j Uj ⊆

⋃
k S ′

k , which gives:

Lemma 15
PRO is saturated at least 1/2 of the time.

Next: bound saturated time by analyzing PRO’s work.

Lemma: PRO is saturated at least 1/2 the time
We have shown

⋃
j Uj ⊆

⋃
k S ′

k , which gives:

Lemma 15
PRO is saturated at least 1/2 of the time.

Next: bound saturated time by analyzing PRO’s work.

Lemma: PRO’s saturated time is at most 3TOPT

TOPT: optimal awake time on the tasks.

Lemma 16
The amount of time that PRO is saturated is at most 3TOPT.

Proof idea:
Bound work on each of four (non-exclusive) categories of tasks τ :

1. PRO runs τ is serial.
2. PRO runs τ in parallel starting after OPT finishes τ .
3. PRO runs τ in parallel completely during times when OPT has

uncompleted tasks.
4. PRO runs τ in parallel starting before OPT finishes τ , but PRO’s

execution of τ overlaps with a time when OPT has no
uncompleted tasks.

Lemma: PRO’s saturated time is at most 3TOPT

TOPT: optimal awake time on the tasks.

Lemma 16
The amount of time that PRO is saturated is at most 3TOPT.

Proof idea:
Bound work on each of four (non-exclusive) categories of tasks τ :

1. PRO runs τ is serial.
2. PRO runs τ in parallel starting after OPT finishes τ .
3. PRO runs τ in parallel completely during times when OPT has

uncompleted tasks.
4. PRO runs τ in parallel starting before OPT finishes τ , but PRO’s

execution of τ overlaps with a time when OPT has no
uncompleted tasks.

Lemma: PRO’s saturated time is at most 3TOPT

TOPT: optimal awake time on the tasks.

Lemma 16
The amount of time that PRO is saturated is at most 3TOPT.

Proof idea:
Bound work on each of four (non-exclusive) categories of tasks τ :

1. PRO runs τ is serial.

2. PRO runs τ in parallel starting after OPT finishes τ .
3. PRO runs τ in parallel completely during times when OPT has

uncompleted tasks.
4. PRO runs τ in parallel starting before OPT finishes τ , but PRO’s

execution of τ overlaps with a time when OPT has no
uncompleted tasks.

Lemma: PRO’s saturated time is at most 3TOPT

TOPT: optimal awake time on the tasks.

Lemma 16
The amount of time that PRO is saturated is at most 3TOPT.

Proof idea:
Bound work on each of four (non-exclusive) categories of tasks τ :

1. PRO runs τ is serial.
2. PRO runs τ in parallel starting after OPT finishes τ .

3. PRO runs τ in parallel completely during times when OPT has
uncompleted tasks.

4. PRO runs τ in parallel starting before OPT finishes τ , but PRO’s
execution of τ overlaps with a time when OPT has no
uncompleted tasks.

Lemma: PRO’s saturated time is at most 3TOPT

TOPT: optimal awake time on the tasks.

Lemma 16
The amount of time that PRO is saturated is at most 3TOPT.

Proof idea:
Bound work on each of four (non-exclusive) categories of tasks τ :

1. PRO runs τ is serial.
2. PRO runs τ in parallel starting after OPT finishes τ .
3. PRO runs τ in parallel completely during times when OPT has

uncompleted tasks.

4. PRO runs τ in parallel starting before OPT finishes τ , but PRO’s
execution of τ overlaps with a time when OPT has no
uncompleted tasks.

Lemma: PRO’s saturated time is at most 3TOPT

TOPT: optimal awake time on the tasks.

Lemma 16
The amount of time that PRO is saturated is at most 3TOPT.

Proof idea:
Bound work on each of four (non-exclusive) categories of tasks τ :

1. PRO runs τ is serial.
2. PRO runs τ in parallel starting after OPT finishes τ .
3. PRO runs τ in parallel completely during times when OPT has

uncompleted tasks.
4. PRO runs τ in parallel starting before OPT finishes τ , but PRO’s

execution of τ overlaps with a time when OPT has no
uncompleted tasks.

PRO Analysis — Type 1 and 2 Tasks
Type 1: PRO runs τ is serial.
Type 2: PRO runs τ in parallel starting after OPT finishes τ .

Claim 4 (1,2)
PRO spends at most pTOPT work on tasks of types (1) and (2).

Proof: If τi is a type (2) task then OPT finishes τi faster than σi ,
or else PRO would have started τi in serial. Thus, OPT must run
type (2) tasks in parallel.

 

 

 

 

 

 

Thus, the total work performed by OPT is at least the sum of πi
for type (2) tasks and σi for type (1) tasks.

PRO Analysis — Type 1 and 2 Tasks
Type 1: PRO runs τ is serial.
Type 2: PRO runs τ in parallel starting after OPT finishes τ .
Proof: If τi is a type (2) task then OPT finishes τi faster than σi ,
or else PRO would have started τi in serial. Thus, OPT must run
type (2) tasks in parallel.

 

 

 

 

 

 

Thus, the total work performed by OPT is at least the sum of πi
for type (2) tasks and σi for type (1) tasks.

PRO Analysis — Type 1 and 2 Tasks
Type 1: PRO runs τ is serial.
Type 2: PRO runs τ in parallel starting after OPT finishes τ .
Proof: If τi is a type (2) task then OPT finishes τi faster than σi ,
or else PRO would have started τi in serial. Thus, OPT must run
type (2) tasks in parallel.

 

 

 

 

 

 

Thus, the total work performed by OPT is at least the sum of πi
for type (2) tasks and σi for type (1) tasks.

PRO Analysis — Type 3 Tasks
Type 3: PRO runs τ in parallel completely during times when OPT
has uncompleted tasks.

Claim 4 (3)
PRO spends at most pTOPT work on tasks of types (3).

Proof: Clear.

PRO Analysis — Type 4 Tasks
Type 4: PRO runs τ in parallel starting before OPT finishes τ , but
PRO’s execution of τ overlaps with a time when OPT has no
uncompleted tasks.

Claim 5 (4)
PRO spends at most pTOPT work on tasks of types (4).

PRO Analysis — Type 4 Tasks
Type 4: PRO runs τ in parallel starting before OPT finishes τ , but
PRO’s execution of τ overlaps with a time when OPT has no
uncompleted tasks.
Proof: For each OPT awake interval I there is at most one type
(4) task that starts during I in parallel and runs past the end of I.
The length of I is at least πi/p for this type (4) task.

PRO Analysis — Type 4 Tasks
Type 4: PRO runs τ in parallel starting before OPT finishes τ , but
PRO’s execution of τ overlaps with a time when OPT has no
uncompleted tasks.

 

 

 

 

 

 

 

 

  runs at most
one parallel task at a time

 

 

 

 

PRO Analysis: Combining the Lemmas

Theorem 17
PRO is a 6-competitive parallel work oblivious scheduler for awake
time.

Proof: PRO is saturated for at least 1/2 of its time steps, and has
at most 3TOPT saturated time steps.

PRO Analysis: Combining the Lemmas

Theorem 17
PRO is a 6-competitive parallel work oblivious scheduler for awake
time.

Proof: PRO is saturated for at least 1/2 of its time steps, and has
at most 3TOPT saturated time steps.

