Scheduling Jobs with Work-Inefficient Parallel Solutions

William Kuszmaul¹, Alek Westover²

Harvard¹, MIT²

SPAA 2024

Engineer wants to perform tasks on a parallel machine. Needs to choose an implementation for each task.

Engineer wants to perform tasks on a parallel machine. Needs to choose an implementation for each task.

1. Parallel implementation:

work inefficient parallelizable

Engineer wants to perform tasks on a parallel machine. Needs to choose an implementation for each task.

1. Parallel implementation:

work inefficient parallelizable

2. Serial implementation:

work efficient, parallelism across tasks not parallelizable

Engineer wants to perform tasks on a parallel machine. Needs to choose an implementation for each task.

1. Parallel implementation:

work inefficient parallelizable

2. Serial implementation:

work efficient, parallelism across tasks not parallelizable

Which implementations should the engineer use?

Engineer wants to perform tasks on a parallel machine. Needs to choose an implementation for each task.

1. Parallel implementation:

work inefficient parallelizable

2. Serial implementation:

work efficient, parallelism across tasks not parallelizable

Which implementations should the engineer use?

Our answer:

Engineer writes a serial and parallel implementation for each task and lets the *scheduler* decide which implementations to use.

Engineer wants to perform tasks on a parallel machine. Needs to choose an implementation for each task.

1. Parallel implementation:

work inefficient parallelizable

2. Serial implementation:

work efficient, parallelism across tasks not parallelizable

Which implementations should the engineer use?

Our answer:

Engineer writes a serial and parallel implementation for each task and lets the *scheduler* decide which implementations to use.

This motivates the algorithmic problem that we consider.

- Input: Set of *n* tasks (σ_i, π_i, t_i)
- σ_i = serial work, π_i = parallel work, t_i = arrival time.
- Output: serial/parallel decisions and job schedule.

- Input: Set of n tasks (σ_i, π_i, t_i)
- σ_i = serial work, π_i = parallel work, t_i = arrival time.
- Output: serial/parallel decisions and job schedule.

At each time step: allocate p processors to jobs. (Serial job \implies at most one processor at a time.)

Completion criterion: Suppose job i has work $w \in \{\pi_i, \sigma_i\}$. Let $x_i(t)$ denote the number of processors allocated to job i at time t. Job i is completed once $\int_0^T x_i(t)dt = w$.

We require $\pi_i/p \le \sigma_i \le \pi_i$.

We've now described the model.

Next: discuss the scheduler's objectives.

Metric 1: Awake Time

Amount of time when there are uncompleted tasks.

Metric 1: Awake Time

Amount of time when there are uncompleted tasks.

Metric 2: Mean Response Time (MRT)

Average time between receiving a task and completing it.

Metric 2: Mean Response Time (MRT)

Average time between receiving a task and completing it.

Metric 2: Mean Response Time (MRT)

Average time between receiving a task and completing it.

We've now described the metrics.

Next: main results.

Main Results

Theorem 1

There is an O(1)-competitive scheduler for awake time.

Main Results

Theorem 1

There is an O(1)-competitive scheduler for awake time.

Theorem 2

There is an O(1)-competitive scheduler for MRT, with O(1)-speed augmentation.

Main Results

Theorem 1

There is an O(1)-competitive scheduler for awake time.

Theorem 2

There is an O(1)-competitive scheduler for MRT, with O(1)-speed augmentation.

Next: Awake time specific results.

Theorem 3

There is a 3-competitive **decide on arrival** scheduler for awake time.

Theorem 3

There is a 3-competitive **decide on arrival** scheduler for awake time.

Theorem 4

There is a 6-competitive **parallel work oblivious** scheduler for awake time.

Theorem 3

There is a 3-competitive **decide on arrival** scheduler for awake time.

Theorem 4

There is a 6-competitive **parallel work oblivious** scheduler for awake time.

Remark 1

Any scheduler that is both decide on arrival and parallel work oblivious is not $o(\sqrt{p})$ -competitive for awake time.

Theorem 3

There is a 3-competitive **decide on arrival** scheduler for awake time.

Theorem 4

There is a 6-competitive **parallel work oblivious** scheduler for awake time.

Remark 1

Any scheduler that is both decide on arrival and parallel work oblivious is not $o(\sqrt{p})$ -competitive for awake time.

Remainder of Talk:

Description and analysis of parallel work oblivious scheduler.

Scheduler PRO (procrastinator) chooses its jobs as follows:

Scheduler PRO (procrastinator) chooses its jobs as follows:

• If the time since some task *i* arrived is larger than task *i*'s serial work, but task *i* hasn't been started yet, start task *i* in serial.

Scheduler PRO (procrastinator) chooses its jobs as follows:

- If the time since some task *i* arrived is larger than task *i*'s serial work, but task *i* hasn't been started yet, start task *i* in serial.
- If there are idle processors and unstarted tasks, choose an arbitrary task to start in parallel.

Scheduler PRO (procrastinator) chooses its jobs as follows:

- If the time since some task *i* arrived is larger than task *i*'s serial work, but task *i* hasn't been started yet, start task *i* in serial.
- If there are idle processors and unstarted tasks, choose an arbitrary task to start in parallel.

time

At each time step, PRO allocates processors to its chosen jobs as follows:

At each time step, PRO allocates processors to its chosen jobs as follows:

• Allocate a processor to all serial jobs, or the *p* serial jobs with the most remaining work if there are more than *p* serial jobs.

At each time step, PRO allocates processors to its chosen jobs as follows:

- Allocate a processor to all serial jobs, or the p serial jobs with the most remaining work if there are more than p serial jobs.
- Allocate any remaining processors to the single running parallel job, if there is any such job.

At each time step, PRO allocates processors to its chosen jobs as follows:

- Allocate a processor to all serial jobs, or the p serial jobs with the most remaining work if there are more than p serial jobs.
- Allocate any remaining processors to the single running parallel job, if there is any such job.

Next: Proof outline.

Proof Outline

Theorem 5

PRO is 6-competitive for awake time.

WLOG: consider task sequences where PRO always has at least one uncompleted task present.

Proof Outline

Theorem 5

PRO is 6-competitive for awake time.

WLOG: consider task sequences where PRO always has at least one uncompleted task present.

Proof outline:

Proof Outline

Theorem 5

PRO is 6-competitive for awake time.

WLOG: consider task sequences where PRO always has at least one uncompleted task present.

Proof outline:

1. Show that at PRO has no idle processors at least half of the time.

Proof Outline

Theorem 5

PRO is 6-competitive for awake time.

WLOG: consider task sequences where PRO always has at least one uncompleted task present.

Proof outline:

- 1. Show that at PRO has no idle processors at least half of the time.
- 2. Bound the amount of work that PRO takes.

Analysis of PRO

Saturated time step: no idle processors.

 $oldsymbol{S_i}$ saturated intervals

 $oldsymbol{U_i}$ unsaturated intervals

 S_1 U_1 S_2 U_2 S_3 U_3 S_4 U_4

Analysis of PRO

Lemma 6

PRO is saturated at least 1/2 of the time.

Proof: Let S_i' be a copy of S_i , shifted to start at the end of S_i . We claim that $\bigcup_i U_j \subseteq \bigcup_k S_k'$.

Lemma Proof Sketch

 S_1'

Lemma Proof Sketch

Lemma Proof Sketch

Lemma: PRO's saturated time is at most 3T_{OPT}

 T_{OPT} : optimal awake time on the tasks.

Lemma 7

The amount of time that PRO is saturated is at most 3T_{OPT}.

Lemma: PRO's saturated time is at most $3T_{OPT}$

 T_{OPT} : optimal awake time on the tasks.

Lemma 7

The amount of time that PRO is saturated is at most $3T_{\mathsf{OPT}}$.

Proof idea:

Bound work on each of four (non-exclusive) categories of tasks τ . Proof omitted due to time.

PRO Analysis: Combining the Lemmas

Theorem 8

PRO is a 6-competitive parallel work oblivious scheduler for awake time.

PRO Analysis: Combining the Lemmas

Theorem 8

PRO is a 6-competitive parallel work oblivious scheduler for awake time.

Proof: PRO is saturated for at least 1/2 of its time steps, and has at most $3T_{OPT}$ saturated time steps.

Open Questions

Awake Time

model	lower bound	best algorithm
vanilla	1.618 - O(1/p)	2
decide on arrival	2 - O(1/p)	3
parallel work oblivious	2 - O(1/p)	6
randomized	1.18 - O(1/p)	2

Mean Response Time

model	lower bound	best algorithm
O(1) speed augmentation	??	O(1)
decide on arrival	??	
parallel work oblivious	$\Omega(p^{1/4})$	
with $O(1)$ speed augmentation	22(p ,)	
non-preemptive	∞	
no speed augmentation	??	

Decide on Arrival Scheduler Definition

Fix TAP $\tau_1, \tau_2, \ldots, \tau_n$.

Definition 9

 $\mathsf{C}^i_\mathsf{ALG}$: completion time of scheduler ALG on tasks $\tau_1, \tau_2, \dots, \tau_i$.

Scheduler BAL: When task τ_i arrives,

- If $\sigma_i + t_i \ge C_{\mathsf{BAL}}^i$ run τ_i in serial.
- Else, run τ_i in parallel.

Depiction of BAL

Figure: Serial job is too large: BAL chooses parallel job

Depiction of BAL

Figure: BAL chooses a serial job

Observe BAL is always "balanced": never has idle processors.

Key Invariant

Let OPT denote the optimal schedule of $\tau_1, \tau_2, \dots, \tau_n$. Important: OPT is not optimal on the first i tasks, is optimal overall.

Let K_{OPT}^i denote the work of OPT on the first *i* tasks.

Key Invariant

Let OPT denote the optimal schedule of $\tau_1, \tau_2, \dots, \tau_n$. Important: OPT is not optimal on the first i tasks, is optimal overall.

Let K_{OPT}^i denote the work of OPT on the first i tasks.

Lemma 10

$$C_{BAL}^{i} \leq 2C_{OPT}^{i} + K_{OPT}^{i}/p.$$

Key Invariant

Let OPT denote the optimal schedule of $\tau_1, \tau_2, \dots, \tau_n$. Important: OPT is not optimal on the first i tasks, is optimal overall.

Let K_{OPT}^i denote the work of OPT on the first i tasks.

Lemma 10

$$C_{\mathsf{BAL}}^i \leq 2C_{\mathsf{OPT}}^i + \mathsf{K}_{\mathsf{OPT}}^i/p.$$

Immediate corollary: BAL is 3-competitive for completion time. (Later: extend to awake time.)

Proof of Key Invariant

Assume

$$\mathsf{C}_{\mathsf{BAL}}^{i-1} \leq 2\mathsf{C}_{\mathsf{OPT}}^{i-1} + \mathsf{K}_{\mathsf{OPT}}^{i-1}/p.$$

Case 1: BAL runs τ_i in serial.

$$\begin{aligned} \mathsf{C}_{\mathsf{BAL}}^{i} &= \mathsf{C}_{\mathsf{BAL}}^{i-1} + \sigma_i/p \\ &\leq 2\mathsf{C}_{\mathsf{OPT}}^{i-1} + \big(\mathsf{K}_{\mathsf{OPT}}^{i-1} + \sigma_i\big)/p \\ &\leq 2\mathsf{C}_{\mathsf{OPT}}^{i} + \mathsf{K}_{\mathsf{OPT}}^{i}/p. \end{aligned}$$

Proof of Key Invariant

Assume

$$\mathsf{C}_{\mathsf{BAL}}^{i-1} \leq 2\mathsf{C}_{\mathsf{OPT}}^{i-1} + \mathsf{K}_{\mathsf{OPT}}^{i-1}/p.$$

Case 2: BAL and OPT both run τ_i in parallel.

$$C_{\mathsf{BAL}}^{i} = C_{\mathsf{BAL}}^{i-1} + \pi_i/p$$

 $\leq 2C_{\mathsf{OPT}}^{i-1} + (K_{\mathsf{OPT}}^{i-1} + \pi_i)/p$
 $\leq 2C_{\mathsf{OPT}}^{i} + K_{\mathsf{OPT}}^{i}/p$.

Proof of Key Invariant

Assume

$$C_{BAL}^{i-1} \le 2C_{OPT}^{i-1} + K_{OPT}^{i-1}/p.$$

Case 3: BAL runs τ_i in parallel, OPT runs τ_i in serial.

 au_i was too large for BAL to run in serial, but OPT ran au_i in serial:

$$C_{\mathsf{OPT}}^i \geq \sigma_i + t_i \geq C_{\mathsf{BAL}}^{i-1}.$$

Thus,

$$C_{BAL}^{i} = C_{BAL}^{i-1} + \pi_{i}/p$$

$$\leq C_{OPT}^{i} + \sigma_{i}$$

$$\leq 2C_{OPT}^{i}.$$

Extending To Awake Time

Solution: if BAL starts an awake interval with more work BAL wont get further behind on this extra work.

Extending to Awake Time

Lemma 11

If BAL starts (balanced) with B extra work and then handles the same TAP as OPT then

$$C_{BAL} \leq 3C_{OPT} + B/p$$
.

Extending to Awake Time

Theorem 12

BAL is a 3-competitive decide on arrival scheduler for awake time.

 $\begin{array}{ll} T_1,T_2,T_3\text{: OPT completion times} & L_1 \leq 3T_1+0 \\ L_1,L_2,L_3\text{: BAL completion times} & L_2 \leq 3T_2+B_1/p \\ L\text{: BAL total completion time} & L_3 \leq 3T_3+B_2/p \end{array}$

$$L = L_1 - B_1/p + L_2 - B_2/p + L_3 \le 3(T_1 + T_2 + T_3)$$

Analysis of PRO

Saturated time step: no idle processors.

 $oldsymbol{S_i}$ saturated intervals

 $oldsymbol{U_i}$ unsaturated intervals

 S_1 U_1 S_2 U_2 S_3 U_3 S_4 U_4

Analysis of PRO

Lemma 13

PRO is saturated at least 1/2 of the time.

Proof: Let S_i' be a copy of S_i , shifted to start at the end of S_i . We claim that $\bigcup_i U_j \subseteq \bigcup_k S_k'$.

Claim 1

Let w be maximum over tasks i present at the start of U_j of the serial work remaining on task i. Then, $|U_j| \leq w$.

Proof:

unsaturated interval $oldsymbol{U_j}$

Claim 2 (2)

Suppose task i is started in serial during saturated interval S_j . Then, $|S_j| \ge \sigma_i$.

Proof:

Claim 3 (3)

Suppose that task i is started in serial at time t and runs during an unsaturated interval $U_j = [a, b]$. Then task i is allocated a processor at each step in [t, a].

Proof: If serial task i gets work stolen from it at some time t, then PRO must have p serial tasks with at least as much remaining work as task i at time t. Then, PRO will remain saturated (at least) until task i is finished.

Corollary 14

For each unsaturated interval U_j , there is a saturated interval S_k such that $U_j \subseteq S'_k$.

Corollary 14

For each unsaturated interval U_j , there is a saturated interval S_k such that $U_j \subseteq S'_k$.

Proof:

Task i = serial job with largest remaining work at beginning of U_j . $S_k =$ the saturated interval when task i was started. Let $U_i = [a, b]$ let $t \in S_k$ be the time when task i is started.

Let $U_j = [a, b]$, let $t \in S_k$ be the time when task i is started.

Corollary 14

For each unsaturated interval U_j , there is a saturated interval S_k such that $U_j \subseteq S'_k$.

Proof:

Task i = serial job with largest remaining work at beginning of U_j . $S_k =$ the saturated interval when task i was started.

Let $U_j = [a, b]$, let $t \in S_k$ be the time when task i is started.

• Claim 3 \implies task *i* runs on every time step in [t, b].

Corollary 14

For each unsaturated interval U_j , there is a saturated interval S_k such that $U_j \subseteq S'_k$.

Proof:

Task i = serial job with largest remaining work at beginning of U_j . $S_k =$ the saturated interval when task i was started. Let $U_i = [a, b]$, let $t \in S_k$ be the time when task i is started.

- Claim 3 \implies task *i* runs on every time step in [t, b].
- So task *i* has at most $\sigma_i (a t)$ work left at the start of U_j .

Corollary 14

For each unsaturated interval U_j , there is a saturated interval S_k such that $U_j \subseteq S'_k$.

Proof:

Task i = serial job with largest remaining work at beginning of U_j . $S_k =$ the saturated interval when task i was started. Let $U_i = [a, b]$, let $t \in S_k$ be the time when task i is started.

- Claim 3 \implies task *i* runs on every time step in [t, b].
- So task *i* has at most $\sigma_i (a t)$ work left at the start of U_j .
- Then, Claim $1 \implies |U_i| \le \sigma_i (a-t)$.

Corollary 14

For each unsaturated interval U_j , there is a saturated interval S_k such that $U_j \subseteq S'_k$.

Proof:

Task i = serial job with largest remaining work at beginning of U_j . $S_k =$ the saturated interval when task i was started. Let $U_i = [a, b]$, let $t \in S_k$ be the time when task i is started.

- Claim 3 \implies task *i* runs on every time step in [t, b].
- So task i has at most $\sigma_i (a t)$ work left at the start of U_i .
- Then, Claim $1 \implies |U_i| \le \sigma_i (a-t)$.
- So $U_j \subseteq [a, a + \sigma_i (a t)] = [a, t + \sigma_i] \subseteq [t, t + \sigma_i].$

Corollary 14

For each unsaturated interval U_j , there is a saturated interval S_k such that $U_j \subseteq S'_k$.

Proof:

Task i = serial job with largest remaining work at beginning of U_j . $S_k =$ the saturated interval when task i was started. Let $U_i = [a, b]$, let $t \in S_k$ be the time when task i is started.

- Claim 3 \implies task *i* runs on every time step in [t, b].
- So task i has at most $\sigma_i (a t)$ work left at the start of U_j .
- Then, Claim $1 \implies |U_j| \le \sigma_i (a-t)$.
- So $U_j \subseteq [a, a + \sigma_i (a t)] = [a, t + \sigma_i] \subseteq [t, t + \sigma_i].$
- Claim 2 \Longrightarrow $|S_k| \ge \sigma_i$

Corollary 14

For each unsaturated interval U_j , there is a saturated interval S_k such that $U_j \subseteq S'_k$.

Proof:

Task i = serial job with largest remaining work at beginning of U_j . $S_k =$ the saturated interval when task i was started. Let $U_i = [a, b]$, let $t \in S_k$ be the time when task i is started.

- Claim 3 \implies task *i* runs on every time step in [t, b].
- So task *i* has at most $\sigma_i (a t)$ work left at the start of U_j .
- Then, Claim $1 \implies |U_j| \le \sigma_i (a-t)$.
- So $U_j \subseteq [a, a + \sigma_i (a t)] = [a, t + \sigma_i] \subseteq [t, t + \sigma_i].$
- Claim 2 \Longrightarrow $|S_k| \ge \sigma_i$
- So $U_j \subseteq [t, t + |S_k|]$.

We have shown $\bigcup_i U_i \subseteq \bigcup_k S'_k$, which gives:

Lemma 15

PRO is saturated at least 1/2 of the time.

$$S_1'$$
 S_2' S_3 S_3' S_4' S_5' S_5'

We have shown $\bigcup_i U_i \subseteq \bigcup_k S'_k$, which gives:

Lemma 15

PRO is saturated at least 1/2 of the time.

Next: bound saturated time by analyzing PRO's work.

Lemma: PRO's saturated time is at most 3T_{OPT}

 T_{OPT} : optimal awake time on the tasks.

Lemma 16

The amount of time that PRO is saturated is at most 3T_{OPT}.

 T_{OPT} : optimal awake time on the tasks.

Lemma 16

The amount of time that PRO is saturated is at most $3T_{\mathsf{OPT}}$.

Proof idea:

Bound work on each of four (non-exclusive) categories of tasks au:

 T_{OPT} : optimal awake time on the tasks.

Lemma 16

The amount of time that PRO is saturated is at most $3T_{\mathsf{OPT}}$.

Proof idea:

Bound work on each of four (non-exclusive) categories of tasks τ :

1. PRO runs au is serial.

 T_{OPT} : optimal awake time on the tasks.

Lemma 16

The amount of time that PRO is saturated is at most $3T_{\mathsf{OPT}}$.

Proof idea:

Bound work on each of four (non-exclusive) categories of tasks τ :

- 1. PRO runs au is serial.
- 2. PRO runs τ in parallel starting after OPT finishes τ .

 T_{OPT} : optimal awake time on the tasks.

Lemma 16

The amount of time that PRO is saturated is at most $3T_{\mathsf{OPT}}$.

Proof idea:

Bound work on each of four (non-exclusive) categories of tasks τ :

- 1. PRO runs τ is serial.
- 2. PRO runs τ in parallel starting after OPT finishes τ .
- 3. PRO runs τ in parallel completely during times when OPT has uncompleted tasks.

Lemma: PRO's saturated time is at most 3T_{OPT}

 T_{OPT} : optimal awake time on the tasks.

Lemma 16

The amount of time that PRO is saturated is at most $3T_{\mathsf{OPT}}$.

Proof idea:

Bound work on each of four (non-exclusive) categories of tasks τ :

- 1. PRO runs τ is serial.
- 2. PRO runs τ in parallel starting after OPT finishes τ .
- 3. PRO runs τ in parallel completely during times when OPT has uncompleted tasks.
- 4. PRO runs τ in parallel starting before OPT finishes τ , but PRO's execution of τ overlaps with a time when OPT has no uncompleted tasks.

PRO Analysis — Type 1 and 2 Tasks

Type 1: PRO runs τ is serial.

Type 2: PRO runs τ in parallel starting after OPT finishes $\tau.$

Claim 4 (1,2)

PRO spends at most pT_{OPT} work on tasks of types (1) and (2).

PRO Analysis — Type 1 and 2 Tasks

Type 1: PRO runs τ is serial.

Type 2: PRO runs τ in parallel starting after OPT finishes τ .

Proof: If τ_i is a type (2) task then OPT finishes τ_i faster than σ_i , or else PRO would have started τ_i in serial. Thus, OPT must run type (2) tasks in parallel.

PRO Analysis — Type 1 and 2 Tasks

Type 1: PRO runs τ is serial.

Type 2: PRO runs τ in parallel starting after OPT finishes τ .

Proof: If τ_i is a type (2) task then OPT finishes τ_i faster than σ_i , or else PRO would have started τ_i in serial. Thus, OPT must run type (2) tasks in parallel.

Thus, the total work performed by OPT is at least the sum of π_i for type (2) tasks and σ_i for type (1) tasks.

PRO Analysis — Type 3 Tasks

Type 3: PRO runs τ in parallel completely during times when OPT has uncompleted tasks.

Claim 4 (3)

PRO spends at most pT_{OPT} work on tasks of types (3).

Proof: Clear.

PRO Analysis — Type 4 Tasks

Type 4: PRO runs τ in parallel starting before OPT finishes τ , but PRO's execution of τ overlaps with a time when OPT has no uncompleted tasks.

Claim 5 (4)

PRO spends at most pT_{OPT} work on tasks of types (4).

PRO Analysis — Type 4 Tasks

Type 4: PRO runs τ in parallel starting before OPT finishes τ , but PRO's execution of τ overlaps with a time when OPT has no uncompleted tasks.

Proof: For each OPT awake interval I there is at most one type (4) task that starts during I in parallel and runs past the end of I. The length of I is at least π_i/p for this type (4) task.

PRO Analysis — Type 4 Tasks

Type 4: PRO runs τ in parallel starting before OPT finishes τ , but PRO's execution of τ overlaps with a time when OPT has no uncompleted tasks.

PRO Analysis: Combining the Lemmas

Theorem 17

PRO is a 6-competitive parallel work oblivious scheduler for awake time.

PRO Analysis: Combining the Lemmas

Theorem 17

PRO is a 6-competitive parallel work oblivious scheduler for awake time.

Proof: PRO is saturated for at least 1/2 of its time steps, and has at most $3T_{OPT}$ saturated time steps.