
A Survey of Randomized Algorithms for the

Canadian Traveller Problem

Alek Westover1, Nathan Sheffield1, and Ryan Chang1

alekw@mit.edu, shefna@mit.edu, rychang@mit.edu
1Massachusetts Institute of Technology

December 2022

Abstract

The Canadian Traveller Problem (CTP) is a widely
studied variant of the shortest-path problem, in which a
traveler discovers unexpected edge blockages in an online
manner. We present known lower-bounds on competitive
ratio for deterministic algorithms in terms of the number
of blocked edges, then survey recent work that uses
randomization and additional information to beat these
bounds. First we summarize [2] and [5] who show an
optimal randomized strategy for the special class of node-
disjoint s-t path graphs. Next we look at [3]’s work on
randomized algorithms in more general graphs. Finally,
we look at recent work [1] on “learning” algorithms,
which have a source of information of unknown quality
and must use this to arrive at a solution somewhere
between the online and offline optima. We conclude by
posing a novel variant of k-CTP, which we analyze for
some simple cases.

1 Introduction

The Canadian Traveller problem (CTP) was first
introduced by Papadimitriou and Yannakakis[4] in 1991.
In the CTP a traveller starting at vertex s aims to move
along the graph to t in the shortest distance, where
the traveller has access to the graph but does not know
which edges are blocked. Upon arriving at a vertex
the traveler discovers whether any edges leaving the
vertex are blocked. An algorithm for solving CTP’s
competitiveness is measured relative to an adversary
who knows which edges are blocked and can therefore
take the shortest unblocked path. (Note that this is only
meaningful when there exists at least one unblocked s-t
path, so we will assume this fact.)
Papadimitriou and Yannakakis showed that CTP

is in general not tractable, i.e. achieving a bounded
competitive ratio is PSPACE-complete. Therefore

most work focuses on finding competitive strategies
for k-CTP, where there are at most k=O(1) blocked
edges and k is known to the algorithm.

CTP has found applications in many real world situ-
ations. For example, navigating a road networks during
severe weather conditions which may lead to e.g. roads
being snowed out, or routing packets through a communi-
cation network with potential outages. In communication
networks k corresponds to the number of connections
that the system can tolerate being down without error; in
this situation it is quite reasonable that packets may have
to navigate the network without perfect information.

1.1 Lower Bounds

A natural strategy is GREEDY: at any point in time,
take the path that looks shortest from your current
location to the destination. Somewhat surprisingly Xu et
al. [7], show there are graphs where GREEDY performs
very poorly, achieving a ratio of Ω(2k) (see Figure 1).
Further analysis in the paper shows GREEDY performs
well with a O(1) competitive ratio on grid-like graphs,
which might explain why it feels intuitive.

Westphal [6] presents two lower bounds on algorithms
for k-CTP. The graph in Figure 2 has k+1 equal-cost
node-disjoint paths, all but one of which are blocked.
Given a deterministic algorithm, an adversary could al-
ways make the unblocked path chosen last and block the
end of every other path, demonstrating a 2k+1 lower
bound on the competitive ratio. Matching this 2k+1
lower bound is achievable on any graph using the simple
BACKTRACK strategy: start by trying the shortest
path. Upon encountering a blocked edge, return to the
start and try the next shortest path. This accumulates a
distance at most 2k+1 times the optimal distance since
one only backtracks a maximum of k times before finding
the optimal path. For randomized algorithms, compet-
itive ratio is measured as expected value of distance

1

Advanced Algorithms Final Project Alek, Nathan, Ryan

Figure 1: A graph where GREEDY achieves ratio Ω(2k)
– it always thinks that it can do better by stepping right
instead of backtracking, but just keeps digging itself
deeper into a hole.

Figure 2: Lower bound: 2k+1 worst case, k+1 average
case

travelled divided by the optimum. Yao’s principle can be
applied to Figure 2 to show that if the input path is ran-
domly selected, the competitive ratio of the deterministic
algorithm is at least k+1. Therefore, the ratio achievable
by randomized algorithm is lower bounded by k+1.

1.2 Outline

In Section 2 we summarize Bender and Westphal
[2]’s randomized strategy that achieves competitive
ratio of k+1 in the special case where all s-t paths
are node-disjoint. We discuss Shiri and Salman [5]’s
correction to Bender and Westphal’s algorithm. In
Section 3 we present Demaine et al. [3]’s methods for
achieving a ratio of (1+1/

√
2)k+1 in pseudopolynomial

time on general graphs. In Section 4 we summarize
Bampis et al.’s [1] work on strategies for “learning”
algorithms which are given predictions of the blocked
paths. In Section 5 we present a novel variant of the
k-CTP and analyze it for simple families of graphs.

2 Bender and Westphal

In [2] Bender andWestphal analyze a restricted version of
the k-CTP problems where all s-t paths are node-disjoint
(i.e. share no vertices besides s and t). Our analysis par-
allels their work, but places emphasis on making the intu-
ition transparent. We also simplify their math, providing
a clearer view for why this strategy works. We synthe-
size their ideas with Shiri and Salman’s work [5], which
points out a critical flaw in the analysis presented in [2].
Graphs with node-disjoint paths are a natural simpli-

fication of k-CTP: for such graphs, every edge blockage
eliminates only a single path. So, we can view the
problem as presenting m disjoint s-t paths, and allowing
at most k of them to be blocked. Note that if k+1<m,
one of the shortest k+1 paths in the graph must be
unblocked – so, we can without loss of generality ignore
all but the k+1 shortest paths and assume m≤k+1.
Any reasonable randomized strategy for this prob-

lem is of the following form: “Choose a probability
distribution over the k+1 paths (based on their costs).
Pick a path according to the assigned probabilities and
follow it. If it is blocked return to the start. Remove
the blocked path from consideration, recalculate the
probability distribution, and repeat until the end is
reached.” We will show that for appropriate choice of
probability distribution we can achieve a competitive
ratio of k+1, which is tight in general.

2.1 A Simple Case: k=1

To develop intuition we consider the case k= 1 (that
is, the case in which at most one edge may be blocked).
Recall that this allows us to without loss of generality
consider only graphs with exactly 2 s-t paths. Let the
initial probability distribution over the paths be p1,p2
and let the path costs be c1,c2.
In the worst case we will spend the entire cost of a

path before learning that it is blocked. If the first path
is blocked, the competitive ratio is

p1(2c1+c2)+p2(c2)

c2
=2p1·c1/c2+1,

because we pay 2c1 for back-tracking in the event that
we start by guessing path 1. Symmetrically, if the second
path is blocked the competitive ratio is 2p2 ·c2/c1+1.
If none of the paths are blocked off, then the situation
is strictly better for the competitive ratio, so this case
can be safely ignored. The competitive ratio of the
algorithm will be the max of the ratio achieved in the
two situations. Balancing to optimize our ratio gives
p1·c21=p2·c22 which combined with p1+p2=1 implies:

p1=
c22

c21+c22
p2=

c21
c21+c22

2

Advanced Algorithms Final Project Alek, Nathan, Ryan

This captures our basic intuition: the larger c1 is, the
more likely we should be to choose the second path, and
vice versa. For this choice of p1,p2 our ratio is:

(c1+c2)
2

c21+c22
≤2=k+1

2.2 Similar Costs Case

Now we attempt to generalize this computation to k>1
in the obvious manner: through induction on k. Our
approach will require a “similar cost” condition, which
will come out of the analysis. Later, we show how to
eliminate the need for the similar cost condition.

Let the path costs be c1,c2,...,ck+1; we seek to assign
probabilities be p1, p2, ... , pk+1 to the paths. If the
optimal path has cost cj, our competitive ratio is at
most (by induction):

pjcj+
∑

i̸=jpi(2ci+kcj)

cj

=
∑
i̸=j

(
2ci
cj

)
pi−(k−1)pj+k.

Now, we balance the k+1 equations to optimize our
competitive ratio. Let the common value that all of the
equations are equal to be d. Then, the balancing can
be expressed as the following matrix equation:

1−k 2c2/c1 ... 2ck+1/c1
2c1/c2 1−k ... 2ck+1/c2

...
...

. . .
...

2c1/ck+1 2c2/ck+1 ... 1−k

p1
p2
...

pk+1

=

d
d
...
d

Taking the inverse of the left matrix using computer
software and solving for pi gives the following expression:

pi=
2
∑

i̸=jcj+(1−k)ci
(k+1)2ci

d.

d can then be scaled to ensure that
∑

pi = 1. The
resulting probability distribution must then be a
multiple of the following distribution pi:

pi=2
∑
j≠i

cj
ci
+(1−k)=2

k+1∑
j=1

cj
ci
−(k+1)

For this to lead to a valid probability distribution, we
need ∀i : pi ≥ 0. Otherwise, some probabilities will
be negative and we will not be able to follow this
probability distribution. Rearranging this with simple
algebra, we obtain that this probability distribution is
possible when the similar costs property is satisfied.

Definition 1 (Similar Costs Property). t paths with
costs c1,c2,...,ct satisfy the similar costs property if
for all i=1,...,t it holds that

ci≤
2

t

t∑
j=1

cj

However, the similar costs property as presented in
[2] is not sufficient because after finding a blocked path,
eliminating it from consideration, and then recalculating
the probability distribution, the remaining distribution
must also satisfy the similar costs property. As such,
we define the strong similar costs property as
introduced by Shiri and Salman[5] in their correction:

Definition 2 (Strong Similar Costs Property). The set
of paths P satisfy the strong similar costs property
if for all nonempty subsets q⊆P , q satisfies the similar
costs property.

By the above analysis, we present the following
algorithm for node-disjoint-paths graphs satisfying the
strong similar costs property:

Algorithm 1 SRA (Simple Randomized Algorithm)

1: P←{}
2: Add the shortest k+1 paths to P
3: while not reached destination do
4: Run SRS on P

Algorithm 2 SRS (Simple Randomized Step)

1: t← number of paths left ▷ functions
like k+1, but updates as we find blockages

2: pi←2
t∑

j=1

cj
ci
−t for i=1,...,|P |

3: s←
∑

pi
4: pi←pi/s
5: Select a random path P∗ where the probability of

choosing the path with cost ci is pi
6: Traverse down P∗

7: if a blocked edge is reached then
8: Return to start
9: P←P\P∗

Theorem 1. When the strong similar costs property
is satisfied, SRA is k+1 competitive.

Proof. In the above calculations, note that d represents
the value that all expressions are equal to and that k+d
represents the competitive ratio. All of the probabilities
must sum to 1, so solving for d yields:

d

(k+1)2

k+1∑
i=1

2
(∑

j≠icj

)
−(k+1)ci

ci
=1

3

Advanced Algorithms Final Project Alek, Nathan, Ryan

d=(k+1)2/

k+1∑
i=1

∑
j≠i

cj/ci

−(k+1)(k−1)

To bound this, we apply the AM-GM inequality, which
tells us that the arithmetic mean of a list of nonnegative
numbers is lower bounded by their geometric mean.
Multiplying together all of the terms in the summation
in the denominator yields 1, so the summation in the
denominator is lower bounded by the number of terms,
or k(k+1). This yields the following upper bound for d:

d≤ (k+1)2

2k(k+1)−(k−1)(k+1)
=

(k+1)2

k2+2k+1
=1

Therefore, the competitive ratio is k + d ≤ k + 1 as
desired.

In Bender and Westphal’s original paper, they
assumed that the similar costs property implies
the strong similar costs property. This assump-
tion was countered in [5], which presents the costs
c1 = 1,c2 = 1,c3 = 4,c4 = 6. The resulting probability
distribution is p1=15/32,p2=15/32,p3=2/32,p4=0. If
the path with cost c3=4 is taken and is revealed to be
blocked, then the remaining path costs do not satisfy
the similar costs property as 6> 2

3(1+1+6). As a result,
Bender and Westphal’s further analysis is flawed. The
this section will be presented in accordance to Shiri and
Salman’s work, which offers a correction.

2.3 General Case with Partitioning

We’ve shown a k+1 competitive algorithms for graphs
with the strong similar costs property, but this property
does not hold in general. To handle the general case,
we introduce the idea of “partitioning.” When the
remaining paths do not follow the similar costs property,
we first sort them by cost. We then partition them into
“classes” that each have the similar costs property. To
do this partitioning, we greedily adding paths into the
largest class, creating a new class only when adding the
next edge would break the similar costs property.

We then apply our simple random step algorithm to
these classes that satisfy the similar costs property until
the destination is reached. This algorithm, developed
by Shiri and Salman, is denoted as M-RBS (modified
randomized backtrack strategy).

Algorithm 3 M-RBS

1: S← Partition(k+1 shortest paths)
2: while not reached destination do
3: Run SRS on S[0]
4: if S[0] still satisfies similar cost property and

is nonempty then
5: Continue
6: P←S[0] and remove S[0] from S
7: Add Partition(P) to the beginning of S

Algorithm 4 Partition

1: S← [] and C←{}
2: for path Pi in P in decreasing order of cost do
3: if Pi∪Ci satisfies similar cost property then
4: Add Pi to C
5: else
6: Add C to front of S and C←{}
7: Add C to front of S if C ≠{}
8: return S

Lemma 1. When tun on t paths that satisfy the similar
cost property such that at least one is traversable,
M-RBS yields a t competitive ratio.

Proof. For the base case of t=2, all non-empty subsets
satisfy the similar cost property. Then M-RBS runs the
same as SRA, yielding a competitive ratio of 2.
We proceed by induction on t and assume that the

claim is true for t′<t. We first establish some definitions.
Let the paths be labeled Pi∈P and let the probability
distribution defined over them be Ω=(p1,p2,...,pt). Let
P∗
i be the optimal path, with cost c∗i and probability of

being taken be p∗i . Finally, let B be the set of blocked
paths, T be the set traversable paths, and Pj be the path
chosen by the algorithm. The competitive ratio r is then:

r=
∑
i∈T

pici
c∗i

+
∑
j∈B

pj
2cj+Ct−1

c∗i

Ct−1 denotes the cost of the strategy after tak-
ing the randomly chosen path, and we claim that
Ct−1 ≤ (t − 1)c∗i . If P\Pj satisfies the similar cost
property, then Ct−1≤(t−1)c∗i via induction.
For the case where the remaining paths do not fulfil

the similar costs property, the paths are partitioned into
L classes C1,C2,...,CL. Let nl be the size of class Cl, cl
be the sum of costs of paths in Cl, and suppose that Cl∗

is the class that contains P∗
i . Classes C1,C2,...,Cl∗−1

contain all blocked paths, causing the algorithm to incur

cost
∑l∗−1

l=1 2cl. Class Cl∗ is a set of paths that has at
least one traversable path and satisfies the similar cost

4

Advanced Algorithms Final Project Alek, Nathan, Ryan

property, meaning our inductive assumption applies to
it for t′=nl∗. Ct−1 is then:

l∗−1∑
l=1

2cl+nl∗ ·ci∗

Note that since c∗i is in a separate class from all classes Cl

such that l=1,...,l∗−1, c∗i does not satisfy the similar cost
property when added to them. This implies a bound for
c∗i which can be substituted into the expression for Ct−1:

c∗i >
2(cl+ci∗)

nl+1
⇒2cl<c∗i (nl−1)

Ct−1<

l∗−1∑
l=1

(nl−1)ci∗+nl∗ ·ci∗≤
l∗∑
l=1

nl ·ci∗≤(t−1)ci∗

Therefore, our claim upper bounding Ct−1 is proven.
Substituting this in and combining the summations for
the competitive ratio r yields:

r≤pi∗+
t∑

j=1|j≠i

pj

(
2cj
ci∗

+t−1
)

To upper bound this with t as desired, the following
inequality needs to hold ∀i=1,2,...,t:

(2−t)pi+
t∑

j=1|j≠i

2
cj
ci
pj≤1

To show this, we look back at how pi was defined.
In the beginning of Section 2.2, we had the following
expression which we later proved was at most k+1 if
we chose pi in the way we did.

αk=

k+1∑
i=1|i̸=j

pi
2ci
cj
−pj(k−1)+k≤k+1

We make the substitution k+1=t since they both repre-
sent the number of paths to obtain the desired inequality,
thus proving that the algorithm is t competitive.

Theorem 2. M-RBS is k+1 competitive on graphs
where all s−t paths are node-disjoint

Proof. If the k+1 shortest paths already satisfy the
similar costs property, then Lemma 1 directly gives the
k+1 competitive ratio. If not, then the same logic in
the proof of Lemma 1 used to upper bound Ct−1 can be
applied to upper bound the competitive ratio of M-RBS
as tci∗. t=k+1 in this case, giving a k+1 competitive
ratio even when partitioning is required.

Theorem 3. M-RBS runs in O(t2) time where
t=min(n,k+1) (excluding the time it takes to traverse
the graph). This bound is tight.

Proof. By restricting our focus to the k + 1 shortest
paths, we only work with t paths. Sorting the paths
takes O(tlogt) time, and the outer while loop can run
t times. Partition runs in O(t) time with the paths
already sorted, and SRS takes O(t) time. Therefore, the
algorithm’s runtime can be upper bounded as O(t2).

The bound is tight under the following circumstances:
there is initially one class of size t. After each iteration,
a path is removed, breaking the similar cost property.
The class is then partitioned into one of size t−2 and
one of size 1. This repeats, causing a partition to be
ran each iteration leading to a O(t2) runtime.

To construct such an example, we start with the base
(1,1,4). We then demonstrate how to take a class with
t paths and add another element ct+1 such all paths
initially follow the similar costs property. However, if
the path with cost ct is chosen, then ct+1 will be placed
into a separate class of size 1. This leads to the following
inequality:

2

t

t−1∑
i=1

ci<ct+1≤
2

t+1

t∑
i=1

ci

We claim that choosing ct+1 to match the upper bound
will also satisfy the lower bound. To show this we need
to show that the lower bound is less than the upper
bound. This inequality can be rearranged as:

2

t

t−1∑
i=1

ci≤
2

t+1

t∑
i=1

ci⇒ct≥
1

t

t−1∑
i=1

ci

We claim that this inequality is always satisfied. We do
so by induction on t. Our base case of (1,1,4) already
satisfies this property. For larger sizes, the element ct
was added such that it equals the upper bound above:

ct=
2

t

t−1∑
i=1

ci≥
1

t

t−1∑
i=1

ci

This completes the induction, showing that we can
always add ct+1=

2
t+1

∑t
i=1ci to generate an input that

causes a O(t2) runtime.

3 Demaine et al.

Westphal’s analysis only applies to node-disjoint paths,
and it is quite tricky to generalize. A large part of the
problem for more general graphs is the fact that there
may be exponentially many short s-t paths, and that
now there are dependencies between the paths.
Demaine et al. give a truly remarkable algorithm

for beating the 2k + 1 deterministic lower bound on
deterministic algorithms in the randomized setting for

5

Advanced Algorithms Final Project Alek, Nathan, Ryan

Figure 3: An example of an apex tree – with removal
of s, this graph is a tree rooted at t.

general graphs. Demaine et al.’s methods can be used
to achieve a ratio of (1 + 1/

√
2)k + 1 in the general

setting in pseudo-polynomial time. To the best of our
knowledge it remains open whether the lower bound of
k+1 is achievable in general.

3.1 Apex Trees

First, Demaine et al. give an optimal randomized
strategy for k-CTP on a specific class of graphs, which
he calls apex trees with cost identical paths. An apex
tree is not quite a tree, but on removing s becomes
a tree (Figure 3). On identical cost apex trees it is
impossible to achieve a competitive ratio of better
than k+1, and the TRAVERSE-TREE algorithm
achieves this. This algorithm will serve as an important
subroutine for Demaine et al.’s method of giving a
randomized strategy for general graphs.
The Traverse Tree algorithm works as follows:

Starting from t, imagine a walk down the apex tree to
s, choosing edges to descend the apex tree uniformly at
random from those available at each step. Try the given
path. If it fails at some location delete all implicated
blocked paths and then find the lowest potentially
reachable ancestor of the fail location. Choose a random
path down from this new target, again choosing the
edges to add to the path uniformly at random at each
step. Now we try this new path, and we repeat this
process until finding an unblocked path.
Note that this is randomly selecting paths in a

top-down approach (choosing among the edges incident
to t and recursing downwards) as opposed to the natural
bottom-up approach of assigning equal probability to all
edges out of s. To see why that strategy fails, consider a
graph where there are many large subtrees out of t, all
blocked at the highest edge, and then a single unblocked
path, as in Figure 4. If we repeatedly choose paths out of
s uniformly, we’re very unlikely to choose the unblocked
path before exploring too many of the blocked ones.

However, assigning probabilities in a top down matter

Figure 4: An apex tree in which a uniform bottom-up
traversal performs poorly. Although there are at most k
blockages, because there is branching involved far more
than a k

k+1 fraction of edges out of s lead to blocked
paths.

and then traversing in this “depth first search” manner
serves to balance the probabilities appropriately.

Lemma 2. The TRAVERSE-TREE strategy achieves a
competitive ratio of k+1 on equal path cost apex trees.

Proof. In the Demaine et al. paper they do some
complicated algebra to prove this, but it is actually quite
straightforward to see why TRAVERSE-TREE works.
Let the cost of all paths be 1. Without loss of

generality no edges out of s are cut (these are edges
that can be seen from the start, so the adversary gains
nothing from blocking these).
First, consider an apex tree where all paths are of

height 1: this is simply a set of node-disjoint paths.
Consider the chance that we decide to traverse a
particular blocked path before the unblocked path.
Clearly this is 1/2: either one is equally likely to be
chosen. Thus, in this case the expected cost is at most
1
22k+1=k+1, as desired.
Now we consider a general example and argue by induc-

tion that the competitive ratio is still k+1. Let the num-
ber of blocked edges in the subtrees of t be b1,...,bℓ. We
are equally likely to visit a particular wrong subtree be-
fore or after the correct subtree. If we traverse a subtree
i that is completely blocked by the bi blockages, we may
incur time up to 2bi on the subtree before abandoning it.
Let i∗ denote an unblocked subtree. Using induction we
know that we spend at most bi∗+1 on the correct subtree
in expectation. Overall, our expected time is at most:∑

i̸=i∗

1

2
2bi+bi∗+1=

∑
bi+1=k+1.

Thus it is shown that on equal cost apex trees we incur
cost k+1.

The classic randomized lower bound (see introduction)
is in fact an apex tree, so k+1 is tight.

6

Advanced Algorithms Final Project Alek, Nathan, Ryan

3.2 Extending to general graphs

Now, we consider the question of computing a com-
petitive strategy in a general graph. Surprisingly, by
combining greedily choosing shortest paths with using
TRAVERSE-TREE on a apex tree that arises from
considering nearly shortest paths we can achieve better
competitive ratios than are possible for deterministic
algorithms. Demaine’s algorithm, called the Greedy &
Reposition Randomized (GRR) strategy, is summarized
in the following pseudo code:

Algorithm 5 GRR

1: i←0 counts the number of blockages that we have
found thus far.

2: while not done do
3: S← paths of length at most (1+α) factor longer

than the shortest path, given our current knowledge
of blocked paths.

4: with probability k−i
k−i+1 (recall k−i is the number

of potential blocked edges that we have not found yet)
uniformly randomly choose a shortest path to try.

5: with probability 1
k−i+1 commit to a TRAVERSE-

TREE on S. (It turns out that we can represent
S as an apex tree.)

6: When a blocked edge is encountered, return to
the start and increment i.

Note that we will continue in a TRAVERSE-TREE
operation until the entire tree being traversed is found to
contain no s-t paths. The details of how to select paths
are largely addressed in subsection 3.3 which discusses
Demaine’s “implicit path representation” scheme.

Intuitively the algorithm works for the following rea-
son: we have an optimal method for traversing equal cost
apex trees, but need to be cautious about applying it to
non equal cost apex trees. Thus, we balance cautiously
doing apex tree traversal and simply greedily choosing
shortest paths. The proof enhances this intuition.

Theorem 4. GRR is (1+1/
√
2)k+1 competitive for

k-CTP and can be computed in pseudo-polynomial time.

Proof. Let c(i) be the amount of work done by
TRAVERSE-TREE if it is called by the i-th iteration
of the loop. Let d∗ represent the length of path that
OPT takes.

Case 1: The traveller does not learn about all blocked
edges. In this case she could have either ended on some
TRAVERSE-TREE operation or by following a shortest
path. In expectation the distance travelled is at most

k∑
i=1

c(i)

k+1
+

k−1∑
i=0

k−i
k+1

2d∗. (1)

This is because there is a k−i+1
k+1 chance of the loop pro-

gressing to level i and then a 1
k−i+1 chance of choosing to

do a TRAVERSE-TREE at that point. Note that failed
TRAVERSE-TREE and failed greedy path choices alike
both incur at most 2d∗ cost. Thus Equation 1 accurately
describes the cost. We can bound c(i) on a successful
TRAVERSE-TREE as c(i)≤(1+α)(k−i+1)d∗ because
TRAVERSE-TREE is basically optimal (we lose the
1+α factor because it’s not actually equal cost paths,
which was the assumption in our apex tree analysis). Us-
ing our bound on c(i) and taking the sums, we find that
in Case 1 our expected competitive ratio is bounded by

3+α

2
k+1.

Case 2: Another possibility is that the traveller
learns all the blocked edges, at which point she can
return to the start and take an optimal path. In
this case, we cannot end in an TRAVERSE-TREE.
However, we are still competitive because the failure of
TRAVERSE-TREE implies that the actual shortest path
is more than a factor of (1+α) larger than our guesses to
the shortest path, so our previous steps were sufficiently
cheap. Thus the travellers time in this case is at most

d∗+

k∑
i=1

c(i)

k+1
+

k−1∑
i=0

k−i
k+1

2d∗/(1+α).

Where now c(i)≤2(k−i+1). Simplifying and dividing
by d∗ to compute our competitive ratio we find the ratio
achieved in Case 2 to be

2+α

1+α
k+1.

To balance Case 1 and Case 2 we set α=
√
2−1 and

obtain a randomized algorithm with competitive ratio
(1+1/

√
2)k+1. The run time guarantee follows from

analysis in Subsection 3.3.

3.3 Implicit representation of all near
shortest paths

It remains to see how we can efficiently implicitly
represent shortest paths and “nearly shortest paths”.
We start by computing the µ shortest distances to each
vertex with a procedure similar to Dijkstra’s algorithm,
as depicted in Algorithm 3.3. We remark that the
description of Algorithm 3.3 has been oversimplified in
our presentation here for ease of explanation. In reality
you need to be more careful that the changes toD(v) are
happen in phases, i.e. the updates toD(u) are performed
only after looping through u,v and determining what
updates need to be performed, but this is a minor detail.

7

Advanced Algorithms Final Project Alek, Nathan, Ryan

Algorithm 6 µ-shortest distances

1: Q←∅ stores a “frontier” of vertices with neighbors
that need to be updated

2: Initialize D(v), which will store the µ shortest
distances v⇝ t found so far, to {∞} for v ≠ t and
{0} for v=t.

3: for i←1,...,µ|E| do
4: Q′←∅
5: for u,v with v∈Q, u→v∈E do
6: Update D(u) based on D(v) and d(u,v).
7: Push u to Q′

8: Q←Q′

Now, we want an implicit representation of the paths.
This is accomplished by just running Algorithm 3.3
in reverse! More precisely, now we start at s and
propagate forwards, finding paths that are µ shortest
paths. Whenever we find an edge and a vertex that
must be included in the graph of the µ shortest paths we
record it. Through this method we create a new graph
G′=(V ′,E′). In particular, as we propagate forward, we
compute lists L(v) of at most µ distances, corresponding
to the possible µ shortest distance paths from v to t that
have come from a µ shortest path out of s indirectly.
This graph may of course contain cycles. We would like
to eliminate the cycles and reduce the structure so that
we have an Apex tree. We can essentially accomplish
this by creating a lot of copies of all the vertices.

For each ℓ∈L(v) we create a new vertex vℓ. Now, we
create edges vℓ→wℓ′ when (v,w)∈E′ and ℓ−d(v,w)=ℓ′.
This of course removes the cycles from the graph.
Demaine et al. observe that this new graph can now rep-
resent an apex tree. Taking µ to be the sum of all edge
weights suffices to represent all paths within a factor of
1+α of the shortest path among those not yet discovered
to be blocked. Because µ is pseudo-polynomial the
algorithm’s run is pseudo-polynomial, as claimed.

4 Bampis, Escoffier, Xefteris:
Learning-Augmentation

We have seen that clever use of randomization can pro-
vide a substantial improvement in worst-case competitive

ratio, reducing us to
(

1√
2
+1

)
k+1 in general, or (k+1) in

graphs with node-disjoint paths. However, in many more
realistic applications, we might find these algorithms un-
satisfying. It is often the case that, although we don’t
know for certain which edges are blocked, we have rea-
sonably strong confidence – as opposed to being truly
adversarial, the problem may be related to some real-
world data with patterns we can extract predictions from.

Figure 5: The optimal path has length 2, but trusting
bad predictions gives us a path of length 202. This gives
competitive ratio of 101 with k=1.

For that sort of instance, backtracking algorithms seem
incredibly wasteful! Why should we spend so much time
exploring paths we are pretty sure are going to be blocked
anyway when, if our predictions were correct, we could
have just gone down the optimal path to begin with?
In a recent paper, Bampis, Escoffier and Xefteris

consider how to resolve this problem. They use the
concept of a learning-augmented algorithm: an algorithm
that’s provided with a prediction of which edges are
blocked (e.g. by a machine learning model trained on
previous instances of the problem), and seeks to perform
close to optimally if the predictions are good.

4.1 Learning-Augmented Approach

Of course, if we are given known-correct predictions,
it is easy to get optimal performance – just follow
the shortest path in the predicted graph! The issue
arises when we are unable to fully trust our predictions.
Perhaps we are training an AI model that correctly
predicts road blockages sometimes, but has the potential
to be wildly wrong. In this case, total blind trust may
lead us catastrophically astray, as shown in Figure 5.
Bampis, Escoffier and Xefteris quantify this degree of

“trust” in our predictions with a parameter ε: if we want
to ensure that we always get within (1+ε) of optimal
when the predictions were perfect, how far must we
allow ourselves to be led astray when the predictions
are wrong? We provide here a simplified presentation
of the key results of the paper: proving and achieving
lower-bounds on performance with incorrect predictions
for deterministic algorithms, and improving on this
performance with a randomized algorithm.

4.2 Deterministic Case

The deterministic algorithm Bampis et al. present for
this problem follows a very intuitive strategy: since we
don’t have complete trust in our predictions, we first run

8

Advanced Algorithms Final Project Alek, Nathan, Ryan

an incomplete version of BACKTRACK to ensure that
our predictions haven’t caused us to miss a much shorter
path. Once we’ve spent some threshold amount of total
work checking the very shortest paths, we then pause and
try going down the optimal path in the predicted graph.
If that predicted optimal path is blocked, we return to
the start and resume BACKTRACK to completion.

This approach is formalized as follows:

Algorithm 7 E-Backtrack

1: Ppred← shortest path in the predicted graph
2: TVL←0 ▷ the total visited length by the algorithm
3: while t not reached do
4: Pnext ← shortest path not yet proven to be

blocked (in the real graph)
5: if Ppred is unblocked and w+2|Pnext|>ε|Ppred|

then
6: Explore Ppred (returning to s if blocked)
7: else
8: Explore Pnext (return to s if blocked)
9: TVL←TVL+length traveled in this step

This algorithm performs BACKTRACK until the
moment BACKTRACK would cause it to traverse more
than ϵ ·OPTpred total path length, at which point it
stops and attempts the predicted optimal path first.
This clearly achieves a (1+ε) competitive ratio under
correct predictions, because it ensures we waste less
than ϵ·OPT work before trying the optimal path. If we
were given incorrect predictions, there are 2 cases:

Case 1: We may find t before exploring Ppred. In
this case, E-BACKTRACK behaves identically to
BACKTRACK, so is (2k+1)-competitive

Case 2: We may explore Ppred before finding t. This
means that, before trying the optimal path, we try and
backtrack on at most k− 2 paths of lengths at most
OPT, plus Ppred, making our total work 2(k−1)·OPT+
2Ppred+OPT. But now, note that we only take Ppred if
the next backtrack path would put us over ϵ|Ppred| work.
So, Ppred can be at most 1

ε(2(k−1)·OPT+2·OPT)= 2k
ε .

Thus, in this case, we are
(
2k−1+ 4k

ε

)
-competitive.

For any ε≤2k, 2k+1≤2k−1+ 4k
ε , so we have found

an algorithm with competitive ratio less than 1+ε given
correct predictions, and 2k− 1+4k/ε given incorrect
predictions, for any ϵ∈ (0,2k]. Figure 6 demonstrates
that it’s impossible to do better:

Figure 6: In this graph, to get a competitive ratio less
than (1 + ε) if our predictions are correct, we must
go down the 2k

ε edge first. If we decided to check
all the cost-1 edges beforehand, and our predictions
were correct, we’d end up with competitive ratio
2k+2k/ε
2k/ε =1+ϵ. But, if our predictions were wrong, this

strategy can result in us traversing all nonzero edges in
the graph (except for one) twice, giving us a competitive
ratio of 2(k−1)+2

(
2k
ϵ

)
+1=2k−1+ 4k

ϵ .

4.3 Randomized Case

Drawing on our previous discussion of randomized
k-CTP, one might now wonder whether it is possible
to get results about randomized learning-augmented
algorithms as well. Does a similar approach generalize?
Since tight bounds are not known for randomized

k-CTP in general, Bampis et al. follow Bender and West-
phal in focusing on the case of node-disjoint paths. We
present the following modified form of E-BACKTRACK:

Algorithm 8 E-RandBacktrack

1: Ppred← shortest path in the predicted graph
2: TVL←0 ▷ the total visited length by the algorithm
3: while t not reached do
4: Pnext← path selected by M-RBS on the graph

excluding Ppred

5: if Ppred is unblocked and w+2|Pnext|>ε|Ppred|,
or if Ppred is the only unblocked path then

6: Explore Ppred (return to s if blocked)
7: else
8: Explore Pnext (return to s if blocked)
9: TVL←TVL+length traveled in this step

Note that we ensure (1+ε)-competitiveness in the case
of correct predictions by always exploring Ppred before
doing more than ε|Ppred| work. Now, suppose our pre-
dictions were incorrect. Here, the expected work we do
is bounded by the expected amount of work done by ran-
domized backtracking, plus 2|Ppred| times the probability
that we explore Ppred. Note that we are doing random-
ized backtracking on a problem with k−1 blocked edges,

9

Advanced Algorithms Final Project Alek, Nathan, Ryan

Figure 7: A graph similar to the one used to prove
deterministic lower-bounds, but has a long path with
cost k/ε. Note that any one of the short paths might
be the unblocked one

so by Bender and Westphal’s analysis, this requires at
most k·OPT work. Now, note that we only explore Ppred

if TVL+2|Pnext|>ε|Ppred|. If randomized backtracking
has not yet terminated at this stage, this means random-
ized backtracking will do at least TVL+ |Pnext| total
work. So, we certainly never explore Ppred unless the
randomized backtracking part of our algorithm requires

more than
ε|Ppred|

2 work. Since we know the expected
amount of work done by the randomized backtracking
portion of our algorithm is bounded by k, we can ap-
ply the Markov bound to show that the probability it

does more than
ε|Ppred|

2 work is at most 2k
ε|Ppred| . So, the

expected amount of work we expend by exploring Ppred is

Pr(we explore Ppred)·2|Ppred|≤
2k

ε|Ppred|
·2|Ppred|=

4k

ε

meaning that we get a competitive ratio in the
incorrect-prediction case of at most

(
k+ 4k

ε

)
.

Unlike for deterministic algorithms though, even
though we restricted to node-disjoint paths, we cannot
present a tight lower-bound here. Bampis et al.
speculate that this algorithm is not optimal, and that
one exists that achieves k+ k

ε . They present a proof
that this is a lower bound as follows:
Suppose we are given a graph as above. Any

deterministic algorithm for this problem is of the form
“try i of the short paths, then try the long path, then try
the rest of the short paths”. So, a randomized algorithm
must be some probability distribution over these
deterministic strategies. Let pi denote the probability
that we select a strategy that tries i short paths before
trying the long path. If our predictions were correct, the
long path is the optimal one, and every short path we
try incurs a cost of 2. Thus, the expected cost is

k

ε
+

k∑
i=0

2i·pi

giving us competitive ratio

1+
ε
∑

2i·pi
k

So, in order for our randomized algorithm to be less
than (1+ε)-competitive in expectation, it must be the
case that

1+
ϵ
∑

2i·pi
k

<1+ε ⇒
k∑

i=0

i·pi<
k

2

Now, suppose our predictions were incorrect, as in Figure
7. That is to say, suppose instead of the long path being
unblocked and all short paths blocked as predicted, the
long path is blocked and some short path is blocked (cho-
sen uniformly at random). Now, for a deterministic strat-
egy, the expected distance is equal to the expected dis-
tance on the short paths plus the expected distance on the
long path. If we ignore the long path, we observe that any
deterministic strategy is equivalent to randomized back-
tracking, and so has expected distance k. Now, consider
the algorithm that explores the long path after i short
paths. The probability that this algorithm has to explore
the long path is equal to the chance that the unblocked
path is not among the first i, so 1− i

k . Thus, the expected
distance the algorithm travels on the long path is

2|Plong|
(
1− i

k

)
=
2k

ε

(
1− i

k

)
=
2k

ε
− 2i

ε

Recall that a randomized strategy is equivalent to some
probability distribution of these deterministic strategies,
so will have competitive ratio

k+

k∑
i=0

pi

(
2k

ε
− 2i

ε

)
=k+

2k

ε
− 2

ε

k∑
i=0

pi·i

Recalling that
∑k

i=0i·pi<
k
2 , this competitive ratio must

be greater than

k+
2k

ε
− 2

ε

(
k

2

)
=k+

k

ε

As mentioned, Bampis et al. believe this lower bound to
be tight, but have been unable to produce an algorithm
achieving it, even in the case of node-disjoint paths. A
potential direction for further investigation would be to
apply ideas from Demaine et al. to find randomized
learning-augmented algorithms for general graphs.

5 Friendly Canadian Locals

We now briefly present a new class of related problems,
offering proofs of basic facts while leaving most of the

10

Advanced Algorithms Final Project Alek, Nathan, Ryan

serious questions open. As with the previous section,
we’ll consider a k-CTP variant in which the traveler is
provided with additional information. However, in our
variant the information is entirely trustworthy – it’s just
limited in size.

5.1 Problem Description

Suppose you were planning to travel through some
Canadian town. When you get there, if there was a
storm, you will not know which paths are snowed in, but
your friend (who lives there) will. If your friend can only
communicate a small amount of information once you get
there (say, if the blizzard is so intense that the only way
she can communicate with you is by a signal flare), how
can you best agree on an encoding procedure beforehand
so that this information is as useful as possible? More
formally, the situation proceeds as follows:

1. First, an adversary gives us a graph G, a start
node s, a destination node t, and a cost function c
from the edges of G to positive real number travel
costs. Based on this graph, the traveler and the
local work together to develop a shared strategy
of information encoding using w bits.

2. Then, the adversary, aware of this strategy, chooses
to block up to k of the edges in the graph. The
blocked edges are revealed to the local but not the
traveler.

3. Based on the blocked edges, the local uses
the shared encoding scheme to send w bits of
information to the traveler.

4. The traveler executes some algorithm informed
by these w bits to travel from s to t with as good
a competitive ratio as possible against the true
shortest path.

Observation: One important observation to make is
that, if w≥k·log|E|, where |E| is the number of edges
in G, it is possible for the local to perfectly encode the
locations of every blocked edge in the graph – so, the
traveler can obtain a competitive ratio of 1. We also
know that if w=0 any deterministic algorithm will have
a 2k+1 competitive ratio lower-bound. However, it is
not obvious what competitive ratios are achievable for
0<w<k·log|E|.

5.2 Node-Disjoint Path Graphs

Although we will not present algorithms for Friendly
Canadian Local problems on general graphs, we will
consider as in Westphal et al. and Bampis et al. the
special case of node-disjoint path graphs, as the problem

is substantially simplified for such graphs. Given a graph
with node-disjoint paths, and an information bound of
w bits, we propose an encoding scheme as follows:
Simple Node-Disjoint Path Encoding Scheme:

Consider the k+1 shortest s-t paths. The local and
traveler agree in advance on a partition of these paths
into 2w arbitrary groups of k+1

2w paths each. Then,
when the local sees the blockages, she uses her w bits to
inform the traveler of the index of the group containing
the smallest unblocked path.

Lemma 3. This scheme allows the traveler to achieve a
competitive ratio of 2k

2w +1 with a deterministic traversal

strategy, or k
2w +1 with a randomized strategy.

Proof. If the traveler restricts their attention to the
specified group, they now have an instance of k−CTP
with the same value of OPT but at most k

22 blocked
edges. So, using BACKTRACK or M-RBS on this
group will achieve competitive ratios of 2k

2w +1 or k
2w +1,

respectively.

This algorithm is straightforward and effective, but
it lacks a potentially desirable property. Consider the
graph in Figure 8:

Figure 8: An instance of the 3-CTP where with no
information, BACKTRACK obtains a ratio of 3.04.
When given information from the friendly Canadian
with w=1, we partition into the red and blue groups,
but this only improves the competitive ratio to 3.

Although our partition scheme guarantees a 2k
2w +1

competitive ratio, it does not in general achieve better
than this on graphs where a competitive ratio less than
2k+1 was possible with no information. So, we propose
the following modification that partitions dissimilar
edge weights together to get the best results from our
previous algorithms:

Algorithm 9 SPP (Stratified Path Partitioning)

1: Initialize 2w empty groups S0, ..., S2w−1

2: for 0≤j<k+1 do
3: d←j mod 2w

4: Add the jth shortest path to Sd

11

Advanced Algorithms Final Project Alek, Nathan, Ryan

Lemma 4. If it is possible to achieve a competitive
ratio of r on a graph with node-disjoint paths, applying
SPP achieves competitive ratio at most r−1

2w +1 in the
corresponding Friendly Canadian Local problem.

Proof. Note that no deterministic algorithm on node-
disjoint paths should try a longer path before a shorter
path, because an adversary would then do better by
blocking the longer one. So, if it is possible to achieve
competitive ratio r, BACKTRACK must achieve
it. Consider the worst-case competitive ratio of an
SPP-informed algorithm. Note that our SPP-informed
algorithm performs exactly every 2wth step a full BACK-
TRACKwould perform, because the groups are stratified
across costs. For all paths that the SPP-informed algo-
rithm backtracks on, full BACKTRACK must backtrack
on paths at least as long 2w times. BACKTRACK
spends (r−1)·OPT distance backtracking, so all but the
last path explored by the SPP algorithm can be explored

with distance (r−1)·OPT
2w . This means it achieves an

overall competitive ratio at most (r−1)
2w +1.

5.3 Further Questions

As with randomized algorithms, the node-disjoint paths
case is relatively easy, but we expect to have to work
harder to understand the case in general graphs. We
know we can achieve a deterministic competitive ratio

of 2
(
k− w

log2|E|

)
+1 for w ≤ k · log2 |E| by revealing a

subset of the blocked edges. But can we do better in
general? Are there special cases somewhat more general
than node-disjoint-paths (e.g. apex trees) where we can
find better encoding schemes?
Additionally, are there other variants of this problem

with interesting properties? We considered changing the
problem by having s,t chosen by the adversary after the
local sends the w bits – this would require the local to
be conveying information important to the graph as a
whole, as opposed to just the specific journey the traveler
wants to take. We also considered encoding schemes
to be developed using randomness unknown to the
adversary – do such schemes offer advantages? We hope
that further investigation into these stories can provide
interesting insights about what makes the CTP difficult,
and what information is necessary in practice to do well.

6 Conclusion

We have surveyed various results about the Canadian
Traveller’s Problem, presenting several ways of breaking
the 2k+1 barrier on competitive ratio for deterministic
algorithms. First, Bender and Westphal demonstrated
that randomized algorithms could improve performance

on the special case of graphs with node-disjoint paths.
Then, Demaine et al. extended those results to show that
randomized algorithms can achieve an improvement in
competitive ratio over deterministic ones even on general
graphs. Next, Bampis et al. presented a model in which
a good competitive ratio can be achieved from a correct
prediction of the graph, while still maintaining robustness
if the prediction is wrong. Finally, we considered to what
degree limited advance information is helpful in improv-
ing performance. Future work in this area to bring down
the competitive ratio on general graphs to match the
k+1 barrier or further analyzing the class of problems
presented in this paper could prove valuable for tackling
the real world problems (like traffic or communication
networks) that can be modeled by k-CTP.

References

[1] Evripidis Bampis, Bruno Escoffier, and Michalis
Xefteris. Canadian traveller problem with predictions.
In Approximation and Online Algorithms: 20th
International Workshop, WAOA 2022, Potsdam,
Germany, September 8–9, 2022, Proceedings, page
116–133, Berlin, Heidelberg, 2022. Springer-Verlag.

[2] Marco Bender and Stephan Westphal. An optimal
randomized online algorithm for the k-canadian
traveller problem on node-disjoint paths. J. Comb.
Optim., 30(1):87–96, jul 2015.

[3] Erik D. Demaine, Yamming Huang, Chung-Shou
Liao, and Kunihiko Sadakane. Canadians should
travel randomly. In Javier Esparza, Pierre Fraigniaud,
Thore Husfeldt, and Elias Koutsoupias, editors, Au-
tomata, Languages, and Programming, pages 380–391,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[4] Christos H. Papadimitriou and Mihalis Yannakakis.
Shortest paths without a map. Theoretical Computer
Science, 84(1):127–150, 1991.

[5] Davood Shiri and F. Sibel Salman. On the ran-
domized online strategies for the k-canadian traveler
problem. J. Comb. Optim., 38(1):254–267, jul 2019.

[6] Stephan Westphal. A note on the k-canadian
traveller problem. Information Processing Letters,
106(3):87–89, 2008.

[7] Yinfeng Xu, Maolin Hu, Bing Su, Binhai Zhu, and
Zhijun Zhu. The canadian traveller problem and
its competitive analysis. Journal of Combinatorial
Optimization, 18(2):195–205, Aug 2009.

12

	Introduction
	Lower Bounds
	Outline

	Bender and Westphal
	A Simple Case: k = 1
	Similar Costs Case
	General Case with Partitioning

	Demaine et al.
	Apex Trees
	Extending to general graphs
	Implicit representation of all near shortest paths

	Bampis, Escoffier, Xefteris: Learning-Augmentation
	Learning-Augmented Approach
	Deterministic Case
	Randomized Case

	Friendly Canadian Locals
	Problem Description
	Node-Disjoint Path Graphs
	Further Questions

	Conclusion

