The PCP Theorem

Alek, Andrei, Nathan Mentor: Jonathan

MIT DRP

2023

OUTLINE

- ▶ Hardness of approximation
- ▶ Statement of theorem
- ▶ Constraint satisfaction problems
- ▶ PCP proof:
	- ▶ Preprocessing
	- ▶ Gap Amplification
	- ▶ Alphabet reduction
- ▶ Proof-checking interpretation of PCP theorem

Unsatisfiable 3SAT formula:

 $(x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee \overline{x}_3) \wedge (x_1 \vee \overline{x}_2 \vee x_3) \wedge (\overline{x}_1 \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x}_2 \vee \overline{x}_3) \wedge$ (*x*1∨*x*2∨*x*3)∧(*x*1∨*x*2∨*x*3)∧(*x*1∨*x*2∨*x*3)∧(*x*1∨*x*2∨*x*4)∧(*x*2∨*x*3∨*x*4)

Unsatisfiable 3SAT formula:

(*x*1∨*x*2∨*x*3)∧(*x*1∨*x*2∨*x*3)∧(*x*1∨*x*2∨*x*3)∧(*x*1∨*x*2∨*x*3)∧(*x*1∨*x*2∨*x*3)∧ $(\overline{x}_1 \vee x_2 \vee \overline{x}_3) \wedge (\overline{x}_1 \vee \overline{x}_2 \vee x_3) \wedge (\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3) \wedge (x_1 \vee x_2 \vee x_4) \wedge (x_2 \vee \overline{x}_3 \vee \overline{x}_4)$ Satisfying assignment for 9/10 clauses:

> $x_1 =$ FALSE x_2 = TRUE x_3 = TRUE $x_4 =$ FALSE

Another unsatisfiable 3SAT formula:

(*x*1∨*x*1∨*x*1)∧(*x*2∨*x*2∨*x*2)∧(*x*3∨*x*3∨*x*3)∧(*x*4∨*x*4∨*x*4)∧(*x*1∨*x*1∨*x*1)∧ $(\overline{x_2} \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_3} \vee \overline{x_3} \vee \overline{x_3}) \wedge (\overline{x_4} \vee \overline{x_4} \vee \overline{x_4}) \wedge (x_1 \vee x_1 \vee x_1) \wedge (\overline{x_1} \vee \overline{x_1} \vee \overline{x_1})$ Satisfying assignment for 5/10 clauses:

> $x_1 =$ FALSE x_2 = FALSE x_3 = TRUE x_4 = TRUE

A 3SAT instance has *gap* ε if any assignment violates an ε fraction of constraints.

Goal: ε*-approximate* 3SAT i.e. want an algorithm that is

Complete: ACCEPTs satisfiable formulas **Sound:** REJECTs formulas with gap $\geq \varepsilon$.

PCP THEOREM

Theorem

It is NP-hard to 90%*-approximate* 3SAT*, because we can efficiently transform* 3SAT *instances to* 3SAT *instances with gap* 12%*.*

CONSTRAINT SATISFACTION PROBLEMS (**qCSP**_W)

Definition (qCSP_W)

q-local constraint system over alphabet of size W

Example:

- \triangleright 3COLOR: 2-local (constraint graph), alphabet $\{R, G, B\}$.
- \blacktriangleright 3SAT: 3-local, alphabet $\{0, 1\}$.

PROOF OUTLINE

small gap \rightarrow big gap

Lemma (Constraint Expander)

 $qCSP_2 \rightarrow 2CSP_2$ *with constraint graph forming an expander. Minor decay of gap and increase in number of constraints.*

Lemma (Gap Amplification)

 ε -gap 2CSP₂ \rightarrow 6 ε -gap 2CSP_W *Increase in alphabet size and increase in number of constraints.*

Lemma (Alphabet Reduction)

 $2CSP_W \rightarrow qCSP_2$ *Minor decay of gap and increase in number of constraints.*

CONSTRAINT EXPANDER

- \blacktriangleright If a variable occurs in too many constraints we make copies of the variable and add constraints dictating that the copies agree.
- ▶ Next, we make the graph *d*-regular
- ▶ Next we add trivial constraints corresponding to self loops and edges of an expander so that the constraint graph becomes an expander

Ideas:

- ▶ Encode many old variables in a single new variable
- ▶ Encode many old constraints in a single new constraint
- \blacktriangleright Ensure that many violated constraints in the old variables correspond to even more violated constraints in the new ones

Variables y_i in the new problem encode values for all variables reachable within distance *t* + √ *t* from *i* in the original graph.

For every path of length $2t + 2$ we have a constraint in G' between the two endpoints ensuring that all constraints in the overlap are met.

Soundness:

Satisfying assignment in *G* can be directly translated to satisfying assignment in *G* ′ .

Completeness:

- \triangleright At least ϵ -fraction of the constraints are violated in the original problem
- \triangleright Want to show 6 ϵ -fraction of paths in the new problem contain violated constraints
- \blacktriangleright Issue: variables in the new problem may not give consistent assignments to the original variables

Majority assignments:

- \triangleright For each old variable, consider the value assigned to it by the majority of the new variables at the end of length-*t* walks
- \blacktriangleright Majority assignment violates at least an ϵ fraction of the old constraints
- ▶ Denote by *S* the set of old constraints violated by the majority assignments

Bounding expected number of violated constraints:

- ▶ Consider the $\frac{\sqrt{t}}{100}$ interval in the middle of a random $(2t + 2)$ -path
- \blacktriangleright $\left(t + \frac{1}{2}\right)$ $\frac{\sqrt{t}}{100}$ -length paths are distributed very similarly to *t*-length paths
- \triangleright ⇒ randomly chosen (2*t* + 2) path contains $Ω(ε√$ *t*) elements of *S* in expectation

Bounding probability of violated constraint:

- \blacktriangleright A bound on the probability of a randomly chosen $(2t + 2)$ -path containing violated old constraints can be obtained from lower bounds on expectation and upper bounds on variance
- \blacktriangleright We just proved Ω(ϵ $\sqrt{ }$ *t*) lower bound on expectation
- \triangleright *O*(ϵ √ *t*) upper bound on variance comes from expander properties
- \blacktriangleright \Rightarrow randomly chosen new constraint has $\Omega(\epsilon\sqrt{\epsilon})$ *t*) chance of being violated; choosing large constant *t* makes this always at least 6ϵ

ALPHABET REDUCTION

ALPHABET REDUCTION

 \triangleright Try 1: make variable for each bit in old variables

- ▶ binary alphabet!
- ▶ not very locally checkable

▶ Try 2: *"Walsh Hadamard Code"*

 \blacktriangleright *WH*(*u*) = $x \mapsto x \cdot u$; write down truth table

$$
\blacktriangleright |u| = n \implies |WH(u)| = n2^n
$$

- \blacktriangleright $u \neq u'$ not locally checkable: *u*, *u'* may only differ on one bit
- ▶ *WH*(*u*) \neq *WH*(*u*[']) locally checkable: *WH*(*u*), *WH*(*u*[']) differ on 1/2 of their bits

▶ But, we can't efficiently check if a string is a WH-code

▶ Try 3: Approximately a WH-code

▶ easy to check!

ALPHABET REDUCTION

Error correction: if a state is "nearly linear", it is close to a unique *WH* code, which we can determine easily [BLR]

ALPHABET REDUCTION: PUTTING IT ALL TOGETHER

New Variables: Variable for each bit of

WH(*u*₁), *WH*(*u*₂), *WH*(*u*₁ ◦ *u*₂), *WH*((*u*₁ ◦ *u*₂)) ⊗ (*u*₁ ◦ *u*₂))

for each old variable u_1, u_2 and each constraint on u_1, u_2 .

Soundness: encode old satisfying assignment **Completeness:**

- 1. Check that terms are valid WH-codes (i.e. nearly linear)
- 2. Check that terms are appropriate concatenations / tensors
- 3. Check that solution solves the quadratic equations

proof idea: check random subsets

PROOF SYSTEM INTERPRETATION OF PCP THEOREM

- ▶ *Proof system*: prover and verifier
- ▶ *Soundness*: there is an honest prover that convinces verifier
- ▶ *Completeness*: no crooked prover can trick verifier

- ▶ Probabilistically checkable proof:
- \blacktriangleright *PCP*(*r*, *q*) : *O*(*r*) random bits, access to *O*(*q*) bits of proof $NP = PCP(\log n, 1)$

ACKNOWLEDGEMENTS

- ▶ Thanks to Irit Dinur for developing the proof we follow here, and for elucidating it in lecture notes
- ▶ Thanks to Arora and Barak for clear coverage in their textbook
- \blacktriangleright Thanks to Jonathan for fantastic mentorship

