
The PCP Theorem

Alek, Andrei, Nathan
Mentor: Jonathan

MIT DRP

2023

OUTLINE

▶ Hardness of approximation
▶ Statement of theorem
▶ Constraint satisfaction problems
▶ PCP proof:

▶ Preprocessing
▶ Gap Amplification
▶ Alphabet reduction

▶ Proof-checking interpretation of PCP theorem

APPROXIMATING 3SAT
Unsatisfiable 3SAT formula:

(x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3)∧

(x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x4)∧(x2∨x3∨x4)

APPROXIMATING 3SAT
Unsatisfiable 3SAT formula:

(x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3)∧

(x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x4)∧(x2∨x3∨x4)

Satisfying assignment for 9/10 clauses:

x1 = FALSE

x2 = TRUE

x3 = TRUE

x4 = FALSE

APPROXIMATING 3SAT
Another unsatisfiable 3SAT formula:

(x1∨x1∨x1)∧(x2∨x2∨x2)∧(x3∨x3∨x3)∧(x4∨x4∨x4)∧(x1∨x1∨x1)∧

(x2∨x2∨x2)∧(x3∨x3∨x3)∧(x4∨x4∨x4)∧(x1∨x1∨x1)∧(x1∨x1∨x1)

Satisfying assignment for 5/10 clauses:

x1 = FALSE

x2 = FALSE

x3 = TRUE

x4 = TRUE

APPROXIMATING 3SAT

A 3SAT instance has gap ε if any assignment violates an ε
fraction of constraints.

Goal: ε-approximate 3SAT
i.e. want an algorithm that is

Complete:
ACCEPTs satisfiable formulas
Sound:
REJECTs formulas with gap ≥ ε.

PCP THEOREM

Theorem
It is NP-hard to 90%-approximate 3SAT, because we can efficiently
transform 3SAT instances to 3SAT instances with gap 12%.

CONSTRAINT SATISFACTION PROBLEMS (qCSPW)

Definition (qCSPW)

q-local constraint system over alphabet of size W

Example:
▶ 3COLOR: 2-local (constraint graph), alphabet {R,G,B} .
▶ 3SAT: 3-local, alphabet {0, 1}.

PROOF OUTLINE

small gap → big gap

Lemma (Constraint Expander)

qCSP2 → 2CSP2 with constraint graph forming an expander.
Minor decay of gap and increase in number of constraints.

Lemma (Gap Amplification)

ε-gap 2CSP2 → 6ε-gap 2CSPW
Increase in alphabet size and increase in number of constraints.

Lemma (Alphabet Reduction)

2CSPW → qCSP2
Minor decay of gap and increase in number of constraints.

CONSTRAINT EXPANDER

▶ If a variable occurs in too many constraints we make
copies of the variable and add constraints dictating that
the copies agree.

▶ Next, we make the graph d-regular
▶ Next we add trivial constraints corresponding to self loops

and edges of an expander so that the constraint graph
becomes an expander

GAP AMPLIFICATION

Ideas:
▶ Encode many old variables in a single new variable
▶ Encode many old constraints in a single new constraint
▶ Ensure that many violated constraints in the old variables

correspond to even more violated constraints in the new
ones

GAP AMPLIFICATION

Variables yi in the new problem encode values for all variables
reachable within distance t +

√
t from i in the original graph.

GAP AMPLIFICATION

For every path of length 2t + 2 we have a constraint in G′

between the two endpoints ensuring that all constraints in the
overlap are met.

GAP AMPLIFICATION

GAP AMPLIFICATION

Soundness:
Satisfying assignment in G can be directly translated to
satisfying assignment in G′.

Completeness:
▶ At least ϵ-fraction of the constraints are violated in the

original problem
▶ Want to show 6ϵ-fraction of paths in the new problem

contain violated constraints
▶ Issue: variables in the new problem may not give

consistent assignments to the original variables

GAP AMPLIFICATION

Majority assignments:
▶ For each old variable, consider the value assigned to it by

the majority of the new variables at the end of length-t
walks

▶ Majority assignment violates at least an ϵ fraction of the
old constraints

▶ Denote by S the set of old constraints violated by the
majority assignments

GAP AMPLIFICATION

Bounding expected number of violated constraints:

▶ Consider the
√

t
100 interval in the middle of a random

(2t + 2)-path

▶
(

t +
√

t
100

)
-length paths are distributed very similarly to

t-length paths
▶ =⇒ randomly chosen (2t + 2) path contains Ω(ϵ

√
t)

elements of S in expectation

GAP AMPLIFICATION

Bounding probability of violated constraint:
▶ A bound on the probability of a randomly chosen

(2t + 2)-path containing violated old constraints can be
obtained from lower bounds on expectation and upper
bounds on variance

▶ We just proved Ω(ϵ
√

t) lower bound on expectation
▶ O(ϵ

√
t) upper bound on variance comes from expander

properties
▶ =⇒ randomly chosen new constraint has Ω(ϵ

√
t) chance

of being violated; choosing large constant t makes this
always at least 6ϵ

ALPHABET REDUCTION

ALPHABET REDUCTION

▶ Try 1: make variable for each bit in old variables
▶ binary alphabet!
▶ not very locally checkable

▶ Try 2: “Walsh Hadamard Code”
▶ WH(u) = x 7→ x · u; write down truth table
▶ |u| = n =⇒ |WH(u)| = n2n

▶ u ̸= u′ not locally checkable: u,u′ may only differ on one bit
▶ WH(u) ̸= WH(u′) locally checkable: WH(u),WH(u′) differ

on 1/2 of their bits
▶ But, we can’t efficiently check if a string is a WH-code

▶ Try 3: Approximately a WH-code
▶ easy to check!

ALPHABET REDUCTION

Error correction: if a state is “nearly linear”, it is close to a
unique WH code, which we can determine easily [BLR]

ALPHABET REDUCTION: PUTTING IT ALL TOGETHER

New Variables: Variable for each bit of

WH(u1),WH(u2),WH(u1 ◦ u2),WH((u1 ◦ u2)⊗ (u1 ◦ u2))

for each old variable u1,u2 and each constraint on u1,u2.

Soundness: encode old satisfying assignment
Completeness:

1. Check that terms are valid WH-codes (i.e. nearly linear)
2. Check that terms are appropriate concatenations / tensors
3. Check that solution solves the quadratic equations

proof idea: check random subsets

PROOF SYSTEM INTERPRETATION OF PCP THEOREM

▶ Proof system: prover and verifier
▶ Soundness: there is an honest prover that convinces verifier
▶ Completeness: no crooked prover can trick verifier

▶ Probabilistically checkable proof:
▶ PCP(r, q) : O(r) random bits, access to O(q) bits of proof

NP = PCP(log n, 1)

ACKNOWLEDGEMENTS
▶ Thanks to Irit Dinur for developing the proof we follow

here, and for elucidating it in lecture notes
▶ Thanks to Arora and Barak for clear coverage in their

textbook
▶ Thanks to Jonathan for fantastic mentorship

