Complexity of Art Gallery Variants

Nathan Sheffield, Alek Westover

MIT

Geometric Computing

The Art Gallery Problem

Input: Polygon *P*, number of guards *g*.

Output: Is there a placement of g guards that can see all of P?

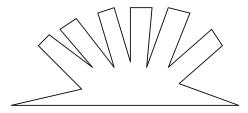


Figure: An Art Gallery

Polygon representation: *P* is represented as a list of *n* vertices which are pairs of *B* bit binary numbers in $\{i \cdot 2^{-B} \mid i \in [2^B]\}$.

Theorem (Chvatal)

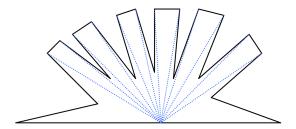
 $\lfloor n/3 \rfloor$ vertex guards always suffice.

We can efficiently compute a set of $\lfloor n/3 \rfloor$ guards that suffice by triangulating *P* and 3-coloring the resulting graph.

Theorem (Chvatal)

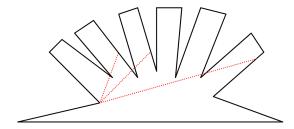
 $\lfloor n/3 \rfloor$ vertex guards always suffice.

But, if we want to *minimize* the number of guards, it's useful to place guards off of vertices.



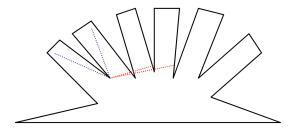
Theorem (Chvatal)

 $\lfloor n/3 \rfloor$ vertex guards always suffice.



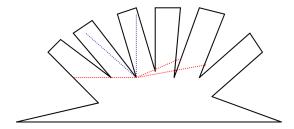
Theorem (Chvatal)

 $\lfloor n/3 \rfloor$ vertex guards always suffice.



Theorem (Chvatal)

 $\lfloor n/3 \rfloor$ vertex guards always suffice.



Complexity of Art Gallery

Question: Is Art Gallery in NP? **Answer**: Probably not.

Definition $(\exists \mathbb{R} \text{ formula})$

 $\exists \mathbb{R} \text{ is the set of all true formulas}$

$$\exists X_1, X_2, \ldots, X_n \in \mathbb{R} \mid \Phi(X_1, \ldots, X_n)$$

where Φ is a well-formed sentence involving variables X_1, \ldots, X_n and symbols $\lor, \land, \neg, 0, 1, +, -, \cdot, (,), =, <, \leq$.

Example:

$$\exists (x,y) \mid x > 0 \land y > 0 \land x + y < 1.$$

Complexity of Art Gallery

Question: Is Art Gallery in NP? **Answer**: Probably not.

Theorem (Abrahamsen, Adamaszek, Miltzow STOC'18) Art Gallery is ∃ℝ-Complete.

Conjecture

 $\mathsf{NP} \subsetneq \exists \mathbb{R}.$

Why is $\exists \mathbb{R}$ potentially larger than NP? Problems in NP have short certificates, but the variables we quantify over can be real, seems hard to write down X_1, \ldots, X_n in a way that makes checking $\phi(X_1, \ldots, X_n)$ easy.

Art Gallery Variants

• Line Guard: is it possible to guard an art gallery with g line segments?

Requirement: every point in the art gallery can be seen by some point on some line.

- Shape Guard: is it possible to guard an art gallery with g (fixed) shapes (e.g., radius ε circles)?
 Requirement: every point in the art gallery can be seen by some point in some shape.
- **3D Line Guard**: Line guard, but in 3D.
- **Promise Point Guard**: Distinguish between two cases: 1. *P* can be guarded by *g* point guards.
 - 2. *P* can't be guarded by $g \epsilon$ -radius circle guards.

Results

Theorem

Line Guard is in $\exists \mathbb{R}$.

Theorem

Promise Point Guard is in NP.

Theorem

3D Line Guard is $\exists \mathbb{R}$ -hard.

Try 1:

 $\exists k \text{ line segments such that } \forall (x, y) \in P,$ $\exists (x', y') \text{ a point on one of our line segments such that } (x', y') \text{ can see } (x, y).$

Try 1:

∃k line segments such that $\forall (x, y) \in P$, ∃(x', y') a point on one of our line segments such that (x', y') can see (x, y).

Good: Checking if line segment contained in polygon is easy.

Try 1:

 $\exists k \text{ line segments such that } \forall (x, y) \in P,$ $\exists (x', y') \text{ a point on one of our line segments such that } (x', y') \text{ can see } (x, y).$

Good: Checking if line segment contained in polygon is easy. **Bad**: \forall quantifiers not allowed in $\exists \mathbb{R}!$

Try 1:

 $\exists k \text{ line segments such that } \forall (x, y) \in P,$ $\exists (x', y') \text{ a point on one of our line segments such that } (x', y') \text{ can see } (x, y).$

Good: Checking if line segment contained in polygon is easy. **Bad**: \forall quantifiers not allowed in $\exists \mathbb{R}!$

Try 2: Maybe there is a small set of points C such that if we can see all points in C then we can also see all points in P?

Try 1:

 $\exists k \text{ line segments such that } \forall (x, y) \in P,$ $\exists (x', y') \text{ a point on one of our line segments such that } (x', y') \text{ can see } (x, y).$

Good: Checking if line segment contained in polygon is easy. **Bad**: \forall quantifiers not allowed in $\exists \mathbb{R}!$

Try 2: Maybe there is a small set of points C such that if we can see all points in C then we can also see all points in P? Kind of...

Definition

 $X = \{ \text{corners of polygon} \} \cup \{ \text{guard segment endpoints} \}$

$$\mathcal{L} = \{ \text{Lines joining points in } X \}$$

 $\mathcal{R} = \{ \text{regions in the arrangement defined by } \mathcal{L} \}$

 $C = \{$ Centroids of regions in $R\}$

Claim: If the guard segments can see all points in C then they can see the entire polygon P.

Note: C depends on the guard locations. This is to be expected, because we do not believe that LineGuard \in NP.

Lemma

If guard segment ℓ can see any point inside region $R \in \mathcal{R}$ then ℓ can see all of R.

Corollary

If the guard segments can all points in C then they can see all points in P.

Corollary

LineGuard $\in \exists \mathbb{R}$.



Figure: If a point $x \in X$ (i.e. a polygon vertex or a guard segment endpoint) can see any point inside region $R \in \mathcal{R}$, then that point can see the whole region.

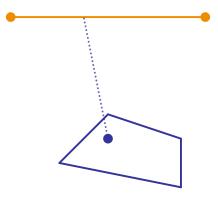


Figure: Suppose some point along a guard segment can see some point of a region R.

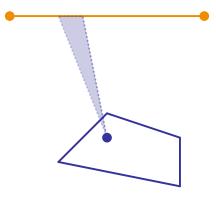


Figure: Suppose some point along a guard segment can see some point of a region R. Sweep the line of sight passing through that point.

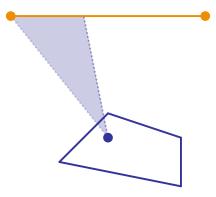


Figure: Sweep to endpoint without encountering an obstacle \implies endpoint of guard segment can see a point of $R \implies$ endpoint can see all of R.



Figure: So, suppose sweep encounters an obstacle.

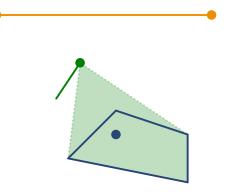


Figure: So, suppose sweep encounters an obstacle. Obstacle is a vertex of P that sees some point of R, so sees all of R.

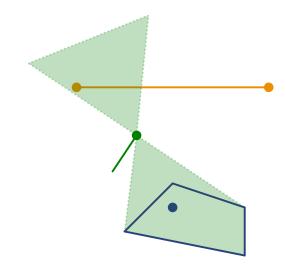


Figure: Look at the angle for which R is in the "field of view" of the obstacle, and extend backwards.

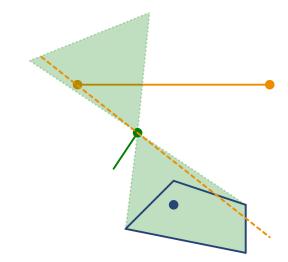


Figure: Any point from X in this "field of view" would generate a line in the arrangement splitting R, contradicting the fact that R is a region of the arrangement. So, guard segment endpoints not in field of view.

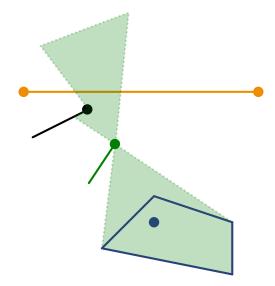


Figure: Also, no other obstacles in field of view to restrict vision from the guard segment to the green point.

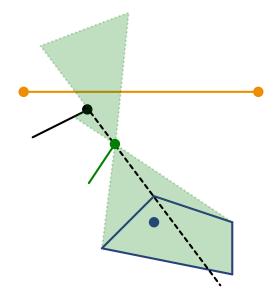


Figure: Also, no other obstacles in field of view to restrict vision from the guard segment to the green point, because they would likewise split R.

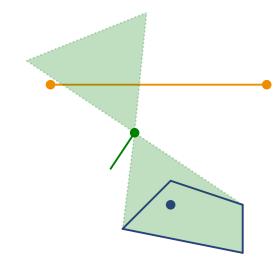


Figure: But now, for every line from the green point to a point in R, extending that line backwards must intersect the guard segment before it hits any other object. So guard segment sees all of R.