Serre 2.2: Existence of Rationals with given Hilbert Symbols

Alek Westover

March 4, 2024

1 Review of Important Theorems

In this section we briefly review some relevant theorems and notation introduced in recent lectures. For integers a, b we write $a \perp b$ to denote that a, b are coprime. For set A and element x we write xA to denote $\{a \cdot x \mid a \in A\}$. We use $[n]$ to denote $\{1, 2, \ldots, n\}$. We define $\mathbb{Q}_{\infty} = \mathbb{R}$, and let V denote the set of primes union $\{\infty\}$. For $v \in V$, $a, b \in \mathbb{Q}_v^*$ the **hilbert symbol** $(a, b)_v$ is $+1$ if the equation $z^2 - ay^2 - bw^2 = 0$ has a nontrivial solution and is −1 otherwise. Some useful trivial properties of the Hilbert Symbol are $(a, b)_v = (b, a)_v$ and $(a, c^2)_v = 1$. We will also use the following theorems about the Hilbert Symbol.

Theorem 1.1 (Computing the Hilbert Symbol). If p is an odd prime, u, v are units in \mathbb{Q}_p , and α, β are integers, then

$$
(up^{\alpha}, vp^{\beta})_p = (-1)^{\alpha\beta(p-1)/2} \left(\frac{u}{p}\right)^{\beta} \left(\frac{v}{p}\right)^{\alpha}.
$$

Theorem 1.2 (Properties of the Hilbert Symbol). Fix $v \in V$. The Hilbert Symbol is bilinear, i.e., satisfies $(aa',b)_v = (a,b)_v(a',b)_v$. The Hilbert Symbol is non-degenerate, i.e., for any b which is not a perfect square in \mathbb{Q}_v^* , there is some a such that $(a, b)_v = -1$.

Theorem 1.3 (Product Formula). For any $a, b \in \mathbb{Q}^*$, $\{v \in V \mid (a, b)_v = -1\}$ is finite, and $\prod_{v \in V} (a, b)_v = 1$.

2 Lemmas for the Main Theorem

Lemma 2.1 (Classification of Squares). Fix prime $p \neq 2$. Let $x = p^n u \in \mathbb{Q}_p$ where u is a unit in \mathbb{Q}_p , and $n \in \mathbb{Z}$. Then x is a square in \mathbb{Q}_p if and only if both n is even and u mod p is a square in \mathbb{F}_p .

Let $y = 2^n u \in \mathbb{Q}_2$ where $n \in \mathbb{Z}$ and u is a unit in \mathbb{Q}_2 . Then x is a square if and only if both n is even and $u \equiv 1 \mod 8$.

Proof. This was proved in chapter 2.

Lemma 2.2 (Chinese Remainder Theorem). Fix $n \in \mathbb{N}$. Let A, M be sets of n integers each, with the integers in M relatively prime. Then, there exists $x \in \mathbb{Z}$ such that for all $a \in A, m \in M$ we have

$$
x \equiv a \mod m.
$$

Proof. Given a_1, a_2, m_1, m_2 with $m_1 \perp m_2$ we have that m_1 is invertible modulo m_2 . Hence, the equation

$$
m_2z+a_1\equiv a_2\mod m_1
$$

has an integer solution. The Chinese Remainder Theorem follows by induction.

Lemma 2.3 (Dirichlet's Theorem). Given coprime integers a, m there are infinitely many primes in $p + a\mathbb{Z}$.

Proof. We will give an analytic number theory proof in a later Chapter.

Lemma 2.4 (Approximation Theorem). Let S be a finite subset of V. The image of \mathbb{Q} in $\prod_{v\in S}\mathbb{Q}_v$ is dense in this product.

 \Box

 \Box

 \Box

Proof. It can only make our task harder to enlarge S. Thus, to eliminate casework we assume that S contains ∞ . Let $n = |S| - 1$. Let p_1, \ldots, p_n denote the non-infinite elements of S. Our goal is to show, for any $(x_\infty, x_1, \ldots, x_n) \in \prod_{v \in S} \mathbb{Q}_v$ and any $\varepsilon > 0$ that there is some $x \in \mathbb{Q}$ such that $|x - x_i|_{p_i} < \varepsilon$ and $|x - x_{\infty}|_{\infty} < \varepsilon.$

For each $i \in [n]$, let $N_i = 1$ if $\nu_{p_i}(x_i) \geq 0$, and $p^{-\nu_{p_i}(x_i)}$ otherwise. Let $N = \prod_i N_i$. Clearly if we can find $x \in \mathbb{Q}$ whose image is arbitrarily close to $(Nx_{\infty}, Nx_1,\ldots,Nx_n)$ then we can also find $x' \in \mathbb{Q}$ whose image is arbitrarily close to $(x_{\infty}, x_1, \ldots, x_n)$. Thus, we may restrict to considering

$$
(Nx_{\infty},Nx_1,\ldots,Nx_n)\in\mathbb{R}\times\mathbb{Z}_{p_1}\times\cdots\times\mathbb{Z}_{p_n}.
$$

Let $(x'_\infty, x'_1, \ldots, x'_n) = (Nx_\infty, Nx_1, \ldots, Nx_n).$

Fix $\varepsilon > 0$. Take M such that $2^{-M} < \varepsilon$. By the Chinese Remainder Theorem we can find $x_0 \in \mathbb{Z}$ such that for all $i \in [n]$

$$
x_0 \equiv x_i' \mod p_i^M.
$$

Let $q \in \mathbb{Z}$ be relatively prime to $\prod_{i \in [n]} p_i$. For any $a \in \mathbb{Z}, M' \in \mathbb{N}$ and for each $i \in [n]$ we have

$$
\left| \frac{a}{q^{M'}} \prod_{i \in [n]} p_i^M + x_0 - x_i' \right|_{p_i} \le p^{-M} \le \varepsilon.
$$

By choosing a, M' appropriately (i.e., because $\mathbb Q$ is dense in $\mathbb R$) we can make

$$
\left| \frac{a}{q^{M'}} \prod_{i \in [n]} p_i^M + x_0 - x'_\infty \right| < \varepsilon.
$$

Thus, for appropriate a, M' the rational $\frac{a}{q^{M'}} \prod_{i \in [n]} p_i^M + x_0$ fulfills our needs.

 \Box

3 Main Theorem

The remainder of this lecture will be devoted to proving the following theorem.

Theorem 3.1 (Theorem 4 in Serre). Let $A \subset \mathbb{Q}^*$ be a finite set of rationals. Let $\sigma : A \times V \to \{-1, 1\}$. We say that $x \in \mathbb{Q}^*$ **fulfills** A, σ if $\sigma(a, v) = (a, x)_v$ for all $a \in A, v \in V$.

There exists x fulfilling A, σ if and only if the following conditions are met:

1. $\{(a, v) | \sigma(a, v) = -1\}$ is finite.

2. For all $a \in A$ we have $\prod_{v \in V} \sigma(a, v) = 1$.

3. For all $v \in V$ there exists $x_v \in \mathbb{Q}_v^*$ such that for all $a \in A$ we have $(a, x_v)_v = \sigma(a, v)$.

Proof. First we show that conditions 1, 2, and 3 are necessary. Assume that there exists x fulfilling A, σ . By [Theorem 1.3](#page-0-0) we have that for each of the finitely many $a \in A$ there are finitely many $v \in V$ such that $(x, a)_v \neq 1$. Thus, [Condition 1](#page-1-0) holds: there are finitely many (a, v) with $\sigma(a, v) \neq 1$. [Theorem 1.3](#page-0-0) also implies [Condition 2](#page-1-1) as follows: for any $a \in A$ we have

$$
\prod_{v \in V} \sigma(a, v) = \prod_{v \in V} (x, a)_v = 1.
$$

Finally, [Condition 3](#page-1-2) holds, because for each $v \in V$ we can take $x_v = x$ and thereby fulfill [Condition 3.](#page-1-2) Now we show that these three conditions are actually sufficient to guarantee the existence of such an x .

We will assume that we actually have $A \subseteq \mathbb{Z}^*$ rather than only $A \subseteq \mathbb{Q}^*$. This is without loss of generality, because the hilbert is invariant under multiplication of one of the terms by a square. Thus, if we choose a number D which is the product of the denominators of the rationals in A then multiplying all numbers in A by D^2 gives integers that will have the same hilbert symbol when paired with x as the original numbers in A. Making A consist of integers is very convenient.

Let A denote the set of prime factors of $2\prod_{a\in A}a$, union $\{\infty\}$. Let M denote the set of "moduli" $v \in V$ such that $\sigma(a, v) = -1$ for some $a \in A$. Note that by [Condition 1](#page-1-0) A, M are finite.

Case I: $\mathcal{A} \cap M = \emptyset$. Our strategy here is to explicitly construct x. Define

$$
\alpha = 4 \prod_{a \in A \setminus \{\infty\}} a \quad \text{and} \quad m = \prod_{p \in M \setminus \{\infty\}} p.
$$

Because $\mathcal{A} \cap M = \emptyset$, we have $\alpha \perp m$. By Dirichlet's theorem this implies the existence of a positive integer k such that $m + \alpha k$ is a prime q not contained in $\mathcal{A} \cup M$. Set $x = m(m + \alpha k)$. We claim that x fulfills A, σ .

Before proving this we motivate the choice of x. Observe that the discriminant of $z^2 - ay^2 - xw^2$ is ax. So, if we have prime p with $p \nmid ax$ then $(a, x)_p = 1$. Thus, it is crucial that each $v \in M \setminus \{\infty\}$ has $v \mid x$ or else $(a, x)_v = -1$ would be impossible regardless of a. This analysis also shows that for all primes $p \notin A \cup M \cup \{q\}$ we instantly have $(a, x)_p = 1 = \sigma(a, p)$ as desired. We have also chosen x such that $x \equiv m^2$ mod p for any prime $p \in \mathcal{A}$. If p is an odd prime this will imply that x is a square in \mathbb{Q}_p and hence that $(a, x)_p = 1$ for all $a \in A$ as desired. Now we carefully verify for each a, v that $\sigma(a, v) = (x, a)_v$. We break the verification into several cases based on the value of v .

- Case I.1: $v \in A$. The assumption defining Case I is that $A \cap M = \emptyset$. Hence, $v \notin M$, and our goal in Case I.1 is to show that $(a, x)_v = 1$ for all $a \in A$.
- Case I.1.1: $v = \infty$. We have $x > 0$, so $(a, x)_{\infty} = 1$ for all $a \in A$.
- Case I.1.2: $v = 2$. We have

$$
x \mod 8 \equiv m^2 + m\alpha k \equiv m^2 \equiv 1
$$

due to $m \perp 2$ and $8 \mid \alpha$. Thus, by our classification of squares in \mathbb{Q}_2 (see [Lemma 2.1\)](#page-0-1) x is a square in \mathbb{Q}_2^* . Thus, $(a, x)_2 = 1$ for all $a \in A$.

• Case I.1.3: $v \in \mathcal{A} \setminus \{2,\infty\}$. We have

$$
x \mod v \equiv m^2 + m\alpha k \equiv m^2 \not\equiv 0
$$

by $m \perp v$ and $v \mid \alpha$ so by our classification of squares in \mathbb{Q}_v we have that x is a square in \mathbb{Q}_v^* , and hence $(a, x)_v = 1$ for all $a \in A$.

• Case I.2: v is a prime $p \notin A$. In particular this implies that $\nu_p(a) = 0$. Thus, by the formula for the Hilbert Symbol (see [Theorem 1.1\)](#page-0-2) we have that for all b ,

$$
(a,b)_p = \left(\frac{a}{p}\right)^{\nu_p(b)}.\tag{1}
$$

- Case I.2.1: $p \notin M \cup \{q\}$. Here we have $\nu_p(mq) = 0$. Then by [\(1\)](#page-2-0) we have $(a, x)_p = 1$ for all $a \in A$. And, because $p \notin M$ we have $\sigma(a, p) = 1$ $\sigma(a, p) = 1$ for all $a \in A$. Thus, we have $\sigma(a, p) = (a, x)_p$ for all $a \in A$.
- Case I.2.2: $p \in M$. Here we have $\nu_p(mq) = 1$. So by [\(1\)](#page-2-0) we have

$$
(a, mq)_p = \left(\frac{a}{mq}\right).
$$

Thus, our goal here is to show that $\left(\frac{a}{mq}\right) = \sigma(a, p)$. Recall [Condition 3:](#page-1-2) there exists $x_p \in \mathbb{Q}_p^*$ such that $(a, x_p)_p = \sigma(a, p)$ for all $a \in A$. By [\(1\)](#page-2-0) we have

$$
(a, x_p)_p = \left(\frac{a}{p}\right)^{\nu_p(x_p)}
$$

.

Because $p \in M$ there is some a with $\sigma(a, p) = -1$. Thus, $(a, x_p)_p$ cannot always be +1, which necessitates $\nu_p(x_p) = 1$ and

$$
(a, x_p)_p = \left(\frac{a}{p}\right).
$$

In summary we have shown:

$$
\sigma(a,p) = (a,x_p)_p = \left(\frac{a}{p}\right) = (a,x)_p,
$$

as desired.

¹In fact, we actually already handled this case earlier via analysis of the discriminant.

• Case I.2.3: $p = q$. Fix $a \in A$. We show $(a, x)_p = \sigma(a, p)$. By the Hilbert Product formula [Theorem 1.3](#page-0-0) we have

$$
(a,x)_p = \prod_{v \neq p} (a,x)_v.
$$

We have already shown

$$
\prod_{v \neq p} (a, x)_v = \prod_{v \neq p} \sigma(a, v).
$$

By [Condition 2](#page-1-1) we have

$$
\prod_{v \neq p} \sigma(a, v) = \sigma(a, p).
$$

Combining our three observations yields $(a, x)_p = \sigma(a, p)$.

Case II: $\mathcal{A} \cap M \neq \emptyset$. Our strategy here is to reduce to Case I some topological facts.

Fact 3.2. The squares of \mathbb{Q}_v^* form an open subgroup of \mathbb{Q}_v^* . This follows from our classification of the squares in \mathbb{Q}_v . For instance, if v is an odd prime p then a neighborhood of the square $x^2 \in \mathbb{Q}_p^*$ contained in the squares of \mathbb{Q}_p^* is $(1+p\mathbb{Z}_p) \cdot x^2$.

Recall also [Lemma 2.4:](#page-0-3) the image of $\mathbb Q$ is dense in $\prod_{v\in\mathcal A}\mathbb Q_v$. Finally, recall that for each $v\in V$ there are $x_v \in \mathbb{Q}_v^*$ such that $(a, x_v)_v = \sigma(a, v)$ for all $a \in A$. Combining these three observations, we can find $x' \in \mathbb{Q}^*$ such that $x' \in x_v \cdot (\mathbb{Q}_v^*)^2$ $x' \in x_v \cdot (\mathbb{Q}_v^*)^2$ for all $v \in \mathcal{A}$. In particular this means that $(a, x')_v = (a, x_v)_v = \sigma(a, v)$ for all $v \in A$ (the Hilbert symbol is the same if we multiply be a square).

Define $\sigma'(a, v) = \sigma(a, v) \cdot (a, x')_v$. We claim that σ' satisfies the three conditions, and that σ' , A falls under Case I. It is clear by the Hilbert Product Formula that σ' is 1 on all but finitely many (a, v) , so σ' satisfies [Condition 1.](#page-1-0) Again using the Hilbert Product Formula we have that for any $a \in A$,

$$
\prod_{v \in V} \sigma'(a, v) = \prod_{v \in V} \sigma(a, v)(a, x')_v = \prod_{v \in V} \sigma(a, v) \prod_{v \in V} (a, x')_v = 1,
$$

so σ' satisfies [Condition 2.](#page-1-1) Finally, to see that [Condition 3](#page-1-2) is satisfied observe that

$$
(a, x_v/x')_v = (a, x_v)_v \cdot (a, x')_v = \sigma(a, v)(a, x')_v = \sigma'(a, v).
$$

To see why σ' , A falls under Case I observe that for any $v \in A$ we have

$$
\sigma'(a,v) = \sigma(a,v) \cdot (a,x')_v = \sigma(a,v) \cdot (a,x_v)_v = \sigma(a,v)^2 = 1.
$$

Applying Case I to σ' , A we receive $y \in \mathbb{Q}^*$ such that

$$
(a,y)_v = \sigma'(a,v)
$$

for all $a \in A, v \in V$. Taking $x = yx'$ we have

$$
(a, yx')_v = \sigma'(a, v)(a, x')_v = \sigma(a, v)(a, x')_v^2 = \sigma(a, v),
$$

as desired.

 \Box

²(\mathbb{Q}_v^*)² denotes the non-zero squares in \mathbb{Q}_v , not a Cartesian product.