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1 Review of Important Theorems

In this section we briefly review some relevant theorems and notation introduced in recent lectures. For
integers a, b we write a ⊥ b to denote that a, b are coprime. For set A and element x we write xA to denote
{a · x | a ∈ A}. We use [n] to denote {1, 2, . . . , n}. We define Q∞ = R, and let V denote the set of primes
union {∞}. For v ∈ V , a, b ∈ Q∗

v the hilbert symbol (a, b)v is +1 if the equation z2 − ay2 − bw2 = 0
has a nontrivial solution and is −1 otherwise. Some useful trivial properties of the Hilbert Symbol are
(a, b)v = (b, a)v and (a, c2)v = 1. We will also use the following theorems about the Hilbert Symbol.

Theorem 1.1 (Computing the Hilbert Symbol). If p is an odd prime, u, v are units in Qp, and α, β are
integers, then

(upα, vpβ)p = (−1)αβ(p−1)/2

(
u

p

)β(
v

p

)α

.

Theorem 1.2 (Properties of the Hilbert Symbol). Fix v ∈ V . The Hilbert Symbol is bilinear, i.e., satisfies
(aa′, b)v = (a, b)v(a

′, b)v. The Hilbert Symbol is non-degenerate, i.e., for any b which is not a perfect square
in Q∗

v, there is some a such that (a, b)v = −1.

Theorem 1.3 (Product Formula). For any a, b ∈ Q∗, {v ∈ V | (a, b)v = −1} is finite, and
∏

v∈V (a, b)v = 1.

2 Lemmas for the Main Theorem

Lemma 2.1 (Classification of Squares). Fix prime p ̸= 2. Let x = pnu ∈ Qp where u is a unit in Qp, and
n ∈ Z. Then x is a square in Qp if and only if both n is even and u mod p is a square in Fp.

Let y = 2nu ∈ Q2 where n ∈ Z and u is a unit in Q2. Then x is a square if and only if both n is even
and u ≡ 1 mod 8.

Proof. This was proved in chapter 2.

Lemma 2.2 (Chinese Remainder Theorem). Fix n ∈ N. Let A,M be sets of n integers each, with the
integers in M relatively prime. Then, there exists x ∈ Z such that for all a ∈ A,m ∈ M we have

x ≡ a mod m.

Proof. Given a1, a2,m1,m2 with m1 ⊥ m2 we have that m1 is invertible modulo m2. Hence, the equation

m2z + a1 ≡ a2 mod m1

has an integer solution. The Chinese Remainder Theorem follows by induction.

Lemma 2.3 (Dirichlet’s Theorem). Given coprime integers a,m there are infinitely many primes in p+ aZ.

Proof. We will give an analytic number theory proof in a later Chapter.

Lemma 2.4 (Approximation Theorem). Let S be a finite subset of V . The image of Q in
∏

v∈S Qv is dense
in this product.
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Proof. It can only make our task harder to enlarge S. Thus, to eliminate casework we assume that S
contains ∞. Let n = |S| − 1. Let p1, . . . , pn denote the non-infinite elements of S. Our goal is to show,
for any (x∞, x1, . . . , xn) ∈

∏
v∈S Qv and any ε > 0 that there is some x ∈ Q such that |x − xi|pi

< ε and
|x− x∞|∞ < ε.

For each i ∈ [n], let Ni = 1 if νpi
(xi) ≥ 0, and p−νpi

(xi) otherwise. Let N =
∏

i Ni. Clearly if we can find
x ∈ Q whose image is arbitrarily close to (Nx∞, Nx1, . . . , Nxn) then we can also find x′ ∈ Q whose image
is arbitrarily close to (x∞, x1, . . . , xn). Thus, we may restrict to considering

(Nx∞, Nx1, . . . , Nxn) ∈ R× Zp1
× · · · × Zpn

.

Let (x′
∞, x′

1, . . . , x
′
n) = (Nx∞, Nx1, . . . , Nxn).

Fix ε > 0. Take M such that 2−M < ε. By the Chinese Remainder Theorem we can find x0 ∈ Z such
that for all i ∈ [n]

x0 ≡ x′
i mod pMi .

Let q ∈ Z be relatively prime to
∏

i∈[n] pi. For any a ∈ Z,M ′ ∈ N and for each i ∈ [n] we have∣∣∣∣∣∣ a

qM ′

∏
i∈[n]

pMi + x0 − x′
i

∣∣∣∣∣∣
pi

≤ p−M ≤ ε.

By choosing a,M ′ appropriately (i.e., because Q is dense in R) we can make∣∣∣∣∣∣ a

qM ′

∏
i∈[n]

pMi + x0 − x′
∞

∣∣∣∣∣∣ < ε.

Thus, for appropriate a,M ′ the rational a
qM′

∏
i∈[n] p

M
i + x0 fulfills our needs.

3 Main Theorem

The remainder of this lecture will be devoted to proving the following theorem.

Theorem 3.1 (Theorem 4 in Serre). Let A ⊂ Q∗ be a finite set of rationals. Let σ : A× V → {−1, 1}. We
say that x ∈ Q∗ fulfills A, σ if σ(a, v) = (a, x)v for all a ∈ A, v ∈ V .

There exists x fulfilling A, σ if and only if the following conditions are met:
1. {(a, v) | σ(a, v) = −1} is finite.
2. For all a ∈ A we have

∏
v∈V σ(a, v) = 1.

3. For all v ∈ V there exists xv ∈ Q∗
v such that for all a ∈ A we have (a, xv)v = σ(a, v).

Proof. First we show that conditions 1, 2, and 3 are necessary. Assume that there exists x fulfilling A, σ.
By Theorem 1.3 we have that for each of the finitely many a ∈ A there are finitely many v ∈ V such that
(x, a)v ̸= 1. Thus, Condition 1 holds: there are finitely many (a, v) with σ(a, v) ̸= 1. Theorem 1.3 also
implies Condition 2 as follows: for any a ∈ A we have∏

v∈V

σ(a, v) =
∏
v∈V

(x, a)v = 1.

Finally, Condition 3 holds, because for each v ∈ V we can take xv = x and thereby fulfill Condition 3. Now
we show that these three conditions are actually sufficient to guarantee the existence of such an x.

We will assume that we actually have A ⊆ Z∗ rather than only A ⊆ Q∗. This is without loss of generality,
because the hilbert is invariant under multiplication of one of the terms by a square. Thus, if we choose a
number D which is the product of the denominators of the rationals in A then multiplying all numbers in A
by D2 gives integers that will have the same hilbert symbol when paired with x as the original numbers in
A. Making A consist of integers is very convenient.

Let A denote the set of prime factors of 2
∏

a∈A a, union {∞}. Let M denote the set of “moduli” v ∈ V
such that σ(a, v) = −1 for some a ∈ A. Note that by Condition 1 A,M are finite.
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Case I: A ∩M = ∅ . Our strategy here is to explicitly construct x. Define

α = 4
∏

a∈A\{∞}

a and m =
∏

p∈M\{∞}

p.

Because A∩M = ∅, we have α ⊥ m. By Dirichlet’s theorem this implies the existence of a positive integer
k such that m+αk is a prime q not contained in A∪M . Set x = m(m+αk). We claim that x fulfills A, σ.

Before proving this we motivate the choice of x. Observe that the discriminant of z2 − ay2 − xw2 is
ax. So, if we have prime p with p ∤ ax then (a, x)p = 1. Thus, it is crucial that each v ∈ M \ {∞} has
v | x or else (a, x)v = −1 would be impossible regardless of a. This analysis also shows that for all primes
p /∈ A∪M ∪{q} we instantly have (a, x)p = 1 = σ(a, p) as desired. We have also chosen x such that x ≡ m2

mod p for any prime p ∈ A. If p is an odd prime this will imply that x is a square in Qp and hence that
(a, x)p = 1 for all a ∈ A as desired. Now we carefully verify for each a, v that σ(a, v) = (x, a)v. We break
the verification into several cases based on the value of v.
� Case I.1: v ∈ A. The assumption defining Case I is that A ∩ M = ∅. Hence, v /∈ M , and our goal in
Case I.1 is to show that (a, x)v = 1 for all a ∈ A.

� Case I.1.1: v = ∞. We have x > 0, so (a, x)∞ = 1 for all a ∈ A.
� Case I.1.2: v = 2. We have

x mod 8 ≡ m2 +mαk ≡ m2 ≡ 1

due to m ⊥ 2 and 8 | α. Thus, by our classification of squares in Q2 (see Lemma 2.1) x is a square in Q∗
2.

Thus, (a, x)2 = 1 for all a ∈ A.
� Case I.1.3: v ∈ A \ {2,∞}. We have

x mod v ≡ m2 +mαk ≡ m2 ̸≡ 0

by m ⊥ v and v | α so by our classification of squares in Qv we have that x is a square in Q∗
v, and hence

(a, x)v = 1 for all a ∈ A.
� Case I.2: v is a prime p ̸∈ A. In particular this implies that νp(a) = 0. Thus, by the formula for the
Hilbert Symbol (see Theorem 1.1) we have that for all b,

(a, b)p =

(
a

p

)νp(b)

. (1)

� Case I.2.1: p /∈ M ∪ {q}. Here we have νp(mq) = 0. Then by (1) we have (a, x)p = 1 for all a ∈ A. And,
because p /∈ M we have σ(a, p) = 1 for all a ∈ A. Thus, we have σ(a, p) = (a, x)p for all a ∈ A.1

� Case I.2.2: p ∈ M . Here we have νp(mq) = 1. So by (1) we have

(a,mq)p =

(
a

mq

)
.

Thus, our goal here is to show that
(

a
mq

)
= σ(a, p). Recall Condition 3: there exists xp ∈ Q∗

p such that

(a, xp)p = σ(a, p) for all a ∈ A. By (1) we have

(a, xp)p =

(
a

p

)νp(xp)

.

Because p ∈ M there is some a with σ(a, p) = −1. Thus, (a, xp)p cannot always be +1, which necessitates
νp(xp) = 1 and

(a, xp)p =

(
a

p

)
.

In summary we have shown:

σ(a, p) = (a, xp)p =

(
a

p

)
= (a, x)p,

as desired.
1In fact, we actually already handled this case earlier via analysis of the discriminant.
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� Case I.2.3: p = q. Fix a ∈ A. We show (a, x)p = σ(a, p). By the Hilbert Product formula Theorem 1.3
we have

(a, x)p =
∏
v ̸=p

(a, x)v.

We have already shown ∏
v ̸=p

(a, x)v =
∏
v ̸=p

σ(a, v).

By Condition 2 we have ∏
v ̸=p

σ(a, v) = σ(a, p).

Combining our three observations yields (a, x)p = σ(a, p).

Case II: A ∩M ̸= ∅ . Our strategy here is to reduce to Case I some topological facts.

Fact 3.2. The squares of Q∗
v form an open subgroup of Q∗

v. This follows from our classification of the
squares in Qv. For instance, if v is an odd prime p then a neighborhood of the square x2 ∈ Q∗

p contained in
the squares of Q∗

p is (1 + pZp) · x2.

Recall also Lemma 2.4: the image of Q is dense in
∏

v∈A Qv. Finally, recall that for each v ∈ V there are
xv ∈ Q∗

v such that (a, xv)v = σ(a, v) for all a ∈ A. Combining these three observations, we can find x′ ∈ Q∗

such that2 x′ ∈ xv · (Q∗
v)

2 for all v ∈ A. In particular this means that (a, x′)v = (a, xv)v = σ(a, v) for all
v ∈ A (the Hilbert symbol is the same if we multiply be a square).

Define σ′(a, v) = σ(a, v) · (a, x′)v. We claim that σ′ satisfies the three conditions, and that σ′, A falls
under Case I. It is clear by the Hilbert Product Formula that σ′ is 1 on all but finitely many (a, v), so σ′

satisfies Condition 1. Again using the Hilbert Product Formula we have that for any a ∈ A,∏
v∈V

σ′(a, v) =
∏
v∈V

σ(a, v)(a, x′)v =
∏
v∈V

σ(a, v)
∏
v∈V

(a, x′)v = 1,

so σ′ satisfies Condition 2. Finally, to see that Condition 3 is satisfied observe that

(a, xv/x
′)v = (a, xv)v · (a, x′)v = σ(a, v)(a, x′)v = σ′(a, v).

To see why σ′, A falls under Case I observe that for any v ∈ A we have

σ′(a, v) = σ(a, v) · (a, x′)v = σ(a, v) · (a, xv)v = σ(a, v)2 = 1.

Applying Case I to σ′, A we receive y ∈ Q∗ such that

(a, y)v = σ′(a, v)

for all a ∈ A, v ∈ V . Taking x = yx′ we have

(a, yx′)v = σ′(a, v)(a, x′)v = σ(a, v)(a, x′)2v = σ(a, v),

as desired.

2(Q∗
v)

2 denotes the non-zero squares in Qv , not a Cartesian product.
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