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1 Review of Important Theorems

In this section we briefly review some relevant theorems and notation introduced in recent lectures. For
integers a, b we write a L b to denote that a,b are coprime. For set A and element x we write zA to denote
{a-x | a€ A}. We use [n] to denote {1,2,...,n}. We define Q- = R, and let V' denote the set of primes
union {oc}. For v € V, a,b € Q} the hilbert symbol (a,b), is +1 if the equation 2% — ay? — bw? = 0
has a nontrivial solution and is —1 otherwise. Some useful trivial properties of the Hilbert Symbol are
(a,b), = (b,a), and (a,c?), = 1. We will also use the following theorems about the Hilbert Symbol.

Theorem 1.1 (Computing the Hilbert Symbol). If p is an odd prime, w,v are units in Q,, and «, 5 are

integers, then
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Theorem 1.2 (Properties of the Hilbert Symbol). Fix v € V. The Hilbert Symbol is bilinear, i.e., satisfies
(ad’,b), = (a,b),(a’,b),. The Hilbert Symbol is non-degenerate, i.e., for any b which is not a perfect square
in Q, there is some a such that (a,b), = —1.

Theorem 1.3 (Product Formula). For any a,b € Q*, {v € V | (a,b), = —1} is finite, and [, oy (a,b), = 1.

2 Lemmas for the Main Theorem

Lemma 2.1 (Classification of Squares). Fix prime p # 2. Let © = p™u € Q, where v is a unit in Q,, and
n € Z. Then z is a square in Q, if and only if both n is even and © mod p is a square in [Fp.

Let y = 2"u € Q2 where n € Z and u is a unit in Q2. Then z is a square if and only if both n is even
and u =1 mod 8.

Proof. This was proved in chapter 2. O

Lemma 2.2 (Chinese Remainder Theorem). Fix n € N. Let A, M be sets of n integers each, with the
integers in M relatively prime. Then, there exists x € Z such that for all a € A, m € M we have

r=a modm.
Proof. Given ay,as, my, mg with mq L mo we have that m; is invertible modulo msy. Hence, the equation
mez + a1 = ay mod my
has an integer solution. The Chinese Remainder Theorem follows by induction. O
Lemma 2.3 (Dirichlet’s Theorem). Given coprime integers a, m there are infinitely many primes in p + aZ.
Proof. We will give an analytic number theory proof in a later Chapter. O

Lemma 2.4 (Approximation Theorem). Let S be a finite subset of V. The image of Q in ], .4 @, is dense
in this product.
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Proof. Tt can only make our task harder to enlarge S. Thus, to eliminate casework we assume that S
contains co. Let n = |S| — 1. Let p1,...,p, denote the non-infinite elements of S. Our goal is to show,
for any (oo, ®1,...,%n) € [[,c5 Qo and any € > 0 that there is some x € Q such that |z — z;|,, < e and
|z — Tooloo < €.

For each i € [n], let N; = 1 if v, (2;) > 0, and p~*»: (1) otherwise. Let N = []; N;. Clearly if we can find
x € Q whose image is arbitrarily close to (N2, N1, ..., N2,) then we can also find 2/ € Q whose image
is arbitrarily close to (s, 1, .., Z,). Thus, we may restrict to considering

(N2zoo, N21,...,N2p) ERXZp, X -+ X Zp,.

Let (zl,24,...,2]) = (N2, Nz1,..., Nxy,).
Fix € > 0. Take M such that 2= < . By the Chinese Remainder Theorem we can find zq € Z such
that for all i € [n]
zo =z, mod pM.

Let g € Z be relatively prime to [[,.,, p:- For any a € Z, M’ € N and for each i € [n] we have

i€[n]

a
Wﬂpﬁvafo—fg §P7M§€~
4 i€[n] pi

By choosing a, M’ appropriately (i.e., because Q is dense in R) we can make

a
— Hpﬁw+xo—xgo <e.
q i€[n]

Thus, for appropriate a, M’ the rational -2 Hie[n] pM + 24 fulfills our needs. O

7
q]W

3 Main Theorem

The remainder of this lecture will be devoted to proving the following theorem.

Theorem 3.1 (Theorem 4 in Serre). Let A C Q* be a finite set of rationals. Let 0 : A x V — {—1,1}. We
say that € Q* fulfills A, o if o(a,v) = (a,z), for alla € A,v € V.

There exists x fulfilling A, o if and only if the following conditions are met:

1. {(a,v) | o(a,v) = —1} is finite.

2. For all a € A we have [[, .y 0(a,v) = 1.

3. For all v € V there exists x,, € Q% such that for all a € A we have (a,z,), = o(a,v).

Proof. First we show that conditions 1, 2, and 3 are necessary. Assume that there exists x fulfilling A, o.
By Theorem 1.3 we have that for each of the finitely many a € A there are finitely many v € V such that
(z,a), # 1. Thus, Condition 1 holds: there are finitely many (a,v) with o(a,v) # 1. Theorem 1.3 also
implies Condition 2 as follows: for any a € A we have

H o(a,v) = H (z,a), = 1.

veV veV

Finally, Condition 3 holds, because for each v € V' we can take z, = = and thereby fulfill Condition 3. Now
we show that these three conditions are actually sufficient to guarantee the existence of such an x.

We will assume that we actually have A C Z* rather than only A C Q*. This is without loss of generality,
because the hilbert is invariant under multiplication of one of the terms by a square. Thus, if we choose a
number D which is the product of the denominators of the rationals in A then multiplying all numbers in A
by D? gives integers that will have the same hilbert symbol when paired with z as the original numbers in
A. Making A consist of integers is very convenient.

Let A denote the set of prime factors of 2], 4 @, union {co}. Let M denote the set of “moduli” v € V
such that o(a,v) = —1 for some a € A. Note that by Condition 1 A, M are finite.
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Case I: AN M = @ . Our strategy here is to explicitly construct x. Define

a=414 H a and m= H p.

acA\{co} pEM\{co}

Because AN M = @, we have o 1. m. By Dirichlet’s theorem this implies the existence of a positive integer

k such that m + «k is a prime ¢ not contained in AU M. Set & = m(m + ak). We claim that z fulfills A, 0.
Before proving this we motivate the choice of z. Observe that the discriminant of 2?2 — ay? — zw? is

ax. So, if we have prime p with p t ax then (a,z), = 1. Thus, it is crucial that each v € M \ {oo} has

v | x or else (a,z), = —1 would be impossible regardless of a. This analysis also shows that for all primes

p ¢ AUM U{q} we instantly have (a,z), = 1 = o(a, p) as desired. We have also chosen x such that z = m?

mod p for any prime p € A. If p is an odd prime this will imply that z is a square in QQ, and hence that

(a,z), =1 for all a € A as desired. Now we carefully verify for each a,v that o(a,v) = (x,a),. We break

the verification into several cases based on the value of v.

e Case I.1: v € A. The assumption defining Case I is that AN M = &. Hence, v ¢ M, and our goal in

Case I.1 is to show that (a,z), =1 for all a € A.
e Case I.1.1: v =00. We have > 0, s0 (a,%)e = 1 for all a € A.
e Case 1.1.2: v =2. We have

z mod8=m’+mak=m?>=1

due to m L 2 and 8 | a. Thus, by our classification of squares in Q2 (see Lemma 2.1) z is a square in Q3.
Thus, (a,z)2 =1 for all a € A.
e Case I.1.3: ve A\ {2,00}. We have

z modv=m?>+mak=m?>#0

by m L v and v | « so by our classification of squares in Q, we have that z is a square in Q7, and hence
(a,x2), =1 for all a € A.

e Case I.2: v is a prime p ¢ A. In particular this implies that v,(a) = 0. Thus, by the formula for the
Hilbert Symbol (see Theorem 1.1) we have that for all b,

@ o= (%) " 1)

e Case 1.2.1: p ¢ M U{q}. Here we have v,(mg) = 0. Then by (1) we have (a,z), =1 for all a € A. And,
because p ¢ M we have o(a,p) =1 for all a € A. Thus, we have o(a,p) = (a,z), for all a € A.}
e Case 1.2.2: p € M. Here we have v,(mg) = 1. So by (1) we have

(@.ma), = ().

Thus, our goal here is to show that (L) = o(a,p). Recall Condition 3: there exists z;, € Q, such that

mq

(a,zp)p = o(a,p) for all a € A. By (1) we have

vp(zp)
a
a,Ty)p = | — .
(a,p)p <p>

Because p € M there is some a with o(a,p) = —1. Thus, (a,z,), cannot always be +1, which necessitates
vp(zp) =1 and
a
(a,zp)p = ()
p/p p

a

ota.p) = (@ay)y = (%) = (@)

In summary we have shown:

as desired.

1In fact, we actually already handled this case earlier via analysis of the discriminant.
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e Case 1.2.3: p=g¢q. Fix a € A. We show (a,z), = o(a,p). By the Hilbert Product formula Theorem 1.3

we have
(a,z)p = H(a,x)v.
v#Ep
We have already shown
H(a,x)v = H o(a,v).
v#p v#p

By Condition 2 we have

H o(a,v) = o(a,p).

v#Pp

Combining our three observations yields (a, z), = o(a, p).

Case II: AN M # & . Our strategy here is to reduce to Case I some topological facts.

Fact 3.2. The squares of Q) form an open subgroup of Q). This follows from our classification of the
squares in Q,. For instance, if v is an odd prime p then a neighborhood of the square 22 € Q,, contained in
the squares of Q; is (1 + pZ,) - 2°.

Recall also Lemma 2.4: the image of Q is dense in [], . 4 Q,. Finally, recall that for each v € V' there are
x, € QF such that (a,2,), = o(a,v) for all a € A. Combining these three observations, we can find 2’ € Q*
such that? 2’ € z, - (Q})? for all v € A. In particular this means that (a,2’), = (a,2,), = o(a,v) for all
v € A (the Hilbert symbol is the same if we multiply be a square).

Define o’(a,v) = o(a,v) - (a,2’),. We claim that o’ satisfies the three conditions, and that o', A falls
under Case I. It is clear by the Hilbert Product Formula that ¢’ is 1 on all but finitely many (a,v), so o’
satisfies Condition 1. Again using the Hilbert Product Formula we have that for any a € A,

H o'(a,v) = H o(a,v)(a,z"), = H o(a,v) H (a,2"), =1,

veEV vEV veV vEV
so ¢’ satisfies Condition 2. Finally, to see that Condition 3 is satisfied observe that
(a,2,/7")y = (a,24)y - (a,2), = o(a,v)(a,2"), = 0’ (a,v).

To see why o', A falls under Case I observe that for any v € A we have

o'(a,v) = o(a,v) - (a,2'), = o(a,v) - (a,z,), = o(a,v)? = 1.
Applying Case I to o', A we receive y € Q* such that

(a,y)0 = 0'(a,v)
for all a € A,v € V. Taking x = yz’ we have
(a,y2'), = o’ (a,v)(a, "), = o(a,v)(a,z")? = o(a,v),

as desired.

2((@1’5)2 denotes the non-zero squares in QQ,, not a Cartesian product.
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